shape and size information. In addition, the cluster-
ing process can be optimised for recognising human
behaviour, because the parts of a person’s body can
be detected and coded by their shape and size over
time. This is crucial for recognising human gait, pos-
ture and gestures (Sminchisescu et al., 2011).
ACKNOWLEDGEMENTS
This work was supported by the EU under
the grant ICT-2009.2.1-270247 NeuralDynamics,
the Portuguese Foundation for LARSyS (PEst-
OE/EEI/LA0009/2013) and PhD grant to author MF
(SFRH/BD/79812/2011).
REFERENCES
Canny, J. (1986). A computational approach to edge detec-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (6):679–698.
Derrington, A. M., Parker, A., Barraclough, N. E., Easton,
A., Goodson, G. R., Parker, K. S., Tinsley, C. J., and
Webb, B. S. (2002). The uses of colour vision: be-
havioural and physiological distinctiveness of colour
stimuli. Phil. Trans. R. Soc. Lond. B, 357:975–985.
Farrajota, M., Rodrigues, J., and du Buf, J. (2011). Op-
tical flow by multi-scale annotated keypoints: A bi-
ological approach. Proc. Int. Conf. on Bio-inspired
Systems and Signal Processing (BIOSIGNALS 2011),
Rome, Italy, 26-29 January, pages 307–315.
Gegenfurtner, K. R. (2003). Cortical mechanisms of colour
vision. Nature Rev. Neurosci, 4:563–572.
Goddard, E., Mannion, D. J., McDonald, J. S., Solomon,
S. G., and Clifford, C. W. G. (2011). Color respon-
siveness argues against a dorsal component of human
v4. Journal of Vision, 11(4).
Grill-Spector, K. and Malach, R. (2004). The human visual
cortex. Annu. Rev. Neurosci., 27:649–677.
Grossberg, S., Mingolla, E., and Ross, W. D. (1997). Vi-
sual brain and visual perception: How does the cor-
tex do perceptual grouping? Trends in neurosciences,
20(3):106–111.
Hansen, T. and Gegenfurtner, K. R. (2006). Higher level
chromatic mechanisms for image segmentation. Jour-
nal of Vision, 6(3).
Hubel, D. (1995). Eye, Brain and Vision. Scientific Ameri-
can Library.
Jacobs, G. H. (2009). Evolution of colour vision in mam-
mals. Phil. Trans. R. Soc. B, 364:2957–2967.
Li, Z. et al. (2000). Pre-attentive segmentation in the pri-
mary visual cortex. Spatial Vision, 13(1):25–50.
Lucchese, L. and Mitra, S. (2001). Color image segmen-
tation: A state-of-the-art survey. Image Processing,
Vision, and Pattern Recognition, Proc. of the Indian
National Science Academy, 67(2):207–221.
Mushrif, M. M. and Ray, A. K. (2008). Color image seg-
mentation: Rough-set theoretic approach. Pattern
Recognition Letters, 29(4):483–493.
Pal, N. R. and Pal, S. K. (1993). A review on image segmen-
tation techniques. Pattern Recognition, 26(9):1277–
1294.
Robol, V., Casco, C., and Dakin, S. C. (2012)). The role of
crowding in contextual influences on contour integra-
tion. Journal of Vision, 12(7):1–18.
Rodrigues, J. and du Buf, J. (2006). Multi-scale keypoints
in V1 and beyond: object segregation, scale selection,
saliency maps and face detection. BioSystems, 2:75–
90.
Roe, A. W., Chelazzi, L., Connor, C. E., Conway, B. R.,
Fujita, I., Gallant, J. L., Lu, H., and Vanduffel, W.
(2012). Toward a unified theory of visual area v4.
Neuron, 74(1):12 – 29.
Shapley, R. and Hawken, M. (2011). Color in the cortex:
single- and double-opponent cells. Vision Research,
51:701–717.
Sminchisescu, C., Bo, L., Ionescu, C., and Kanaujia, A.
(2011). Feature-based pose estimation. In Visual
Analysis of Humans, pages 225–251. Springer.
Vantaram, S. R. and Saber, E. (2012). Unsupervised video
segmentation by dynamic volume growing and mul-
tivariate volume merging using color-texture-gradient
features. In Image Processing (ICIP), 19th IEEE In-
ternational Conference on, pages 305–308. IEEE.
Young, R. A., Lesperance, R. M., and Meyer, W. W. (2001).
The gaussian derivative model for spatial-temporal vi-
sion: I. cortical model. Spatial Vision, 14(3-4):261–
319.
Zeki, S. (1998). review: Parallel processing, asynchronous
perception, and a distributed system of consciousness
in vision. The Neuroscientist, 4(5):365–372.
Zeki, S., Watson, J., Lueck, C., Friston, K. J., Kennard, C.,
and Frackowiak, R. (1991). A direct demonstration of
functional specialization in human visual cortex. The
Journal of neuroscience, 11(3):641–649.
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
254