REFERENCES
Ao, J., Mitra, S., Long, R., Nutter, B., and Antani, S. (2011).
A hybrid watershed method for cell image segmenta-
tion. IEEE Southwest Symposium on Image Analysis
and Interpretation.
Ariel J. Bernal, S. E. F. and Bernal, L. J. (2008). Cell recog-
nition using wavelet templates. Canadian Conference
on Electrical and Computer Engineering.
bin Abdul Jamil, M. M., Sharif, J. M., Miswan, M. F.,
Ngadi, M. A., and Salam, M. S. H. (2012). Red blood
cell segmentation using masking and watershed algo-
rithm: A preliminary study. International Conference
on Biomedical Engineering.
Brain, D. (2003). Learning From Large Data: Bias, Vari-
ance, Sampling and Learning Curves. PhD thesis,
Deakin University.
Carpenter, A., Jones, T., Lamprecht, M., and et al (2006).
CellProfiler: image analysis software for identifying
and quantifying cell phenotypes. Genome Biology.
Cheng, J. and Rajapakse, J. C. (2009). Segmentation
of clustered nuclei with shape markers and marking
function. IEEE Transactions on Biomedical Engineer-
ing.
F. Boray Tek, A. G. D. and Kale, I. (2009a). Computer
Vision for Microscopy Diagnosis of Malaria. Malaria
Journal.
F. Boray Tek, A. G. D. and Kale, I. (2009b). Malaria Par-
asite Detection in Peripheral Blood Images. IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing.
for Bio-Image Informatics, C. (2013). Ucsb bio-
segmentation benchmarking.
Institute, B. (2013). Broad bioimage benchmark collection.
Kane, C., Iwasa, J., Orloff, D., and Wong, W. (2013). The
cell: An image library.
Kevin Smith, A. C. and Lepetit, V. (2009). Fast ray features
for learning irregular shapes. Internation Conference
on Computer Vision.
Kujiper, A. and Heise, B. (2008). An automated cell seg-
mentation method for differential interference con-
trast microscopy. International Conference on Pattern
Recognition.
Lebrun, G., Charrier, C., Lezoray, O., Meurie, C., and Car-
dot, H. (2007). A Fast And Efficient Segmentation
Scheme For Cell Microscopic Image. Cellular and
Molecular Biology.
Meijering, E. (2012). Cell segmentation: 50 years down the
road. IEEE Signal Processing Magazine.
Nawi, N. M., Ransing, M. R., and Ransing, R. S. (2006). An
improved learning algorithm based on the broyden-
fletcher-goldfarb-shanno (bfgs) method for back prop-
agation neural networks. International Conference on
Intelligent Systems Design and Applications.
Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M.,
Hufnagl, P., Dietel, M., Denkert, C., and Klauschen,
F. (2012). Detection and segmentation of cell nuclei
in virtual microscopy images; a minimum-model ap-
proach. Scientific Reports.
Zaritsky, A., Natan, S., Horev, J., Hecht, I., Wolf, L., Ben-
Jacob, E., and Tsarfaty, I. (2011). Cell motility dy-
namics: A novel segmentation algorithm to quantify
multi-cellular bright field microscopy images. PLoS
ONE.
Zhaozhen Ying, Ryoma Bise, M. C. and Kanade, T. (2010).
Cell segmentation in microscopy imagery using a bag
of local bayesian classifiers. The IEEE International
Symposium on Biomedical Imaging.
Zhou, Y. (2007). Cell segmentation using level set method.
Technical report, Institute for Computational and Ap-
plied Mathematics, Johannes Kepler University, Linz.
GeneralPurposeSegmentationforMicroorganismsinMicroscopyImages
695