A Descriptor based on Intensity Binning for Image Matching

B. Balasanjeevi, C. Chandra Sekhar

2014

Abstract

This paper proposes a method for extracting image descriptors using intensity binning. It is based on the fact that, when the intensities of the interest regions are quantized, the pixels retain their bin labels under common image deformations, up to a certain degree of perturbation. Consequently, the spatial configuration and the shape of the connected regions of pixels belonging to each bin become resilient to noise, which, as a whole, capture the topography of the intensity map pertaining to that region. We examine the effect of classical image deformations on this representation and seek to find a compact yet robust representation which remains unperturbed in the presence of noise and image deformations. We use Oxford dataset in our experiments and the results show that the proposed descriptor gives a better performance than the existing methods for matching two images under common image deformations.

References

  1. Agarwal, S., Snavely, N., Simon, I., Seitz, S., and Szeliski, R. (2009). Building rome in a day. In IEEE International Conference on Computer Vision, pages 72-79.
  2. Baumberg, A. (2000). Reliable feature matching across widely separated views. In IEEE Conference on Computer Vision and Pattern Recognition, pages 774-781.
  3. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110:346-359.
  4. Berg, A., Berg, T., and Malik, J. (2005). Shape matching and object recognition using low distortion correspondences. In IEEE Conference on Computer Vision and Pattern Recognition, pages 26-33.
  5. Berg, A. and Malik, J. (2001). Geometric blur for template matching. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I607 - I-614 vol.1.
  6. Brown, M., Hua, G., and Winder, S. (2011). Discriminative learning of local image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):43-57.
  7. Brown, M. and Lowe, D. G. (2003). Recognising panoramas. In IEEE International Conference on Computer Vision, pages 1218-1225.
  8. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., and Gao, W. (2010). WLD: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):1705 -1720.
  9. Cheng, H., Liu, Z., Zheng, N., and Yang, J. (2008). A deformable local image descriptor. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1 -8.
  10. Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In IEEE Conference on Computer Vision and Pattern Recognition, pages 264-271.
  11. Freeman, W. and Adelson, E. (1991). The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891-906.
  12. Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Alvey vision conference, pages 147-152.
  13. Heikkil, M., Pietikinen, M., and Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42(3):425-436.
  14. Johnson, A. E. and Hebert, M. (1997). Recognizing objects by matching oriented points. In IEEE Conference on Computer Vision and Pattern Recognition, pages 684- 689.
  15. Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for local image descriptors. In IEEE Conference on Computer Vision and Pattern Recognition.
  16. Kennedy, L. S. and Naaman, M. (2008). Generating diverse and representative image search results for landmarks. In International Conference on World Wide Web, pages 297-306.
  17. Lazebnik, S., Schmid, C., and Ponce, J. (2005). A sparse texture representation using local affine regions. PAMI, 27(8):1265-1278.
  18. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  19. Mikolajczyk, K. and Schmid, C. (2001). Indexing based on scale invariant interest points. In IEEE International Conference on Computer Vision, pages 525-531.
  20. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615-1630.
  21. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1):43-72.
  22. Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2161- 2168.
  23. Snavely, N., Seitz, S., and Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2):189-210.
  24. Tuytelaars, T. and Mikolajczyk, K. (2008). Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision, 3(3):177-280.
  25. Tuytelaars, T. and Van Gool, L. (2004). Matching widely separated views based on affine invariant regions. International Journal of Computer Vision, 59(1):61-85.
  26. Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57:137-154.
  27. Zhang, J., Marszalek, M., Lazebnik, S., and Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73:213- 238.
Download


Paper Citation


in Harvard Style

Balasanjeevi B. and Chandra Sekhar C. (2014). A Descriptor based on Intensity Binning for Image Matching . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 96-103. DOI: 10.5220/0004827700960103


in Bibtex Style

@conference{icpram14,
author={B. Balasanjeevi and C. Chandra Sekhar},
title={A Descriptor based on Intensity Binning for Image Matching},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={96-103},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004827700960103},
isbn={978-989-758-018-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - A Descriptor based on Intensity Binning for Image Matching
SN - 978-989-758-018-5
AU - Balasanjeevi B.
AU - Chandra Sekhar C.
PY - 2014
SP - 96
EP - 103
DO - 10.5220/0004827700960103