However, compared with the state-of-the-art descrip-
tors, the proposed descriptors achieved the very good
detection results and we will also focus on detection
of other objects of interest using this method.
ACKNOWLEDGMENTS
This work was supported by the SGS in VSB Techni-
cal University of Ostrava, Czech Republic, under the
grant No. SP2014/170.
REFERENCES
Berg, T. L., Berg, A. C., Edwards, J., and Forsyth, D.
(2005). Who’s in the picture. In Saul, L. K., Weiss,
Y., and Bottou, L., editors, Advances in Neural Infor-
mation Processing Systems 17, pages 137–144. MIT
Press, Cambridge, MA.
Bosch, A., Zisserman, A., and Munoz, X. (2007). Repre-
senting shape with a spatial pyramid kernel. In Pro-
ceedings of the 6th ACM international conference on
Image and video retrieval, CIVR ’07, pages 401–408,
New York, NY, USA. ACM.
Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992).
A training algorithm for optimal margin classifiers.
In Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory, pages 144–152.
ACM Press.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 1, pages 886 –
893 vol. 1.
Felzenszwalb, P., Girshick, R., McAllester, D., and Ra-
manan, D. (2010). Object detection with discrim-
inatively trained part-based models. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
32(9):1627–1645.
Ferrari, V., Marin-Jimenez, M., and Zisserman, A. (2008).
Progressive search space reduction for human pose es-
timation. In Computer Vision and Pattern Recogni-
tion, 2008. CVPR 2008. IEEE Conference on, pages
1–8.
Freund, Y. and Schapire, R. E. (1995). A decision-theoretic
generalization of on-line learning and an application
to boosting. In Proceedings of the Second Euro-
pean Conference on Computational Learning The-
ory, EuroCOLT ’95, pages 23–37, London, UK, UK.
Springer-Verlag.
Fusek, R., Sojka, E., Mozdren, K., and Surkala, M. (2013).
Energy-transfer features and their application in the
task of face detection. In Advanced Video and Signal
Based Surveillance (AVSS), 2013 10th IEEE Interna-
tional Conference on, pages 147–152.
Hadid, A., Pietikainen, M., and Ahonen, T. (2004). A dis-
criminative feature space for detecting and recogniz-
ing faces. In Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, volume 2, pages II–
797–II–804 Vol.2.
Lee, K., Ho, J., and Kriegman, D. (2005). Acquiring linear
subspaces for face recognition under variable light-
ing. IEEE Trans. Pattern Anal. Mach. Intelligence,
27(5):684–698.
Liao, S., Zhu, X., Lei, Z., Zhang, L., and Li, S. Z. (2007).
Learning multi-scale block local binary patterns for
face recognition. In ICB, pages 828–837.
Lienhart, R. and Maydt, J. (2002). An extended set of haar-
like features for rapid object detection. In Image Pro-
cessing. 2002. Proceedings. 2002 International Con-
ference on, volume 1, pages I–900–I–903 vol.1.
Ojala, T., Pietik
¨
ainen, M., and Harwood, D. (1996). A com-
parative study of texture measures with classification
based on featured distributions. Pattern Recognition,
29(1):51–59.
Papageorgiou, C. and Poggio, T. (2000). A trainable system
for object detection. Int. J. Comput. Vision, 38(1):15–
33.
Perona, P. and Malik, J. (1990). Scale-space and edge detec-
tion using anisotropic diffusion. IEEE Trans. Pattern
Anal. Mach. Intell., 12:629–639.
Tan, X. and Triggs, B. (2010). Enhanced local texture fea-
ture sets for face recognition under difficult lighting
conditions. Image Processing, IEEE Transactions on,
19(6):1635–1650.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In Computer Vi-
sion and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Confer-
ence on, volume 1, pages I–511 – I–518 vol.1.
Zhang, L., Chu, R., Xiang, S., Liao, S., and Li, S. Z. (2007).
Face detection based on multi-block lbp representa-
tion. In Proceedings of the 2007 international confer-
ence on Advances in Biometrics, ICB’07, pages 11–
18, Berlin, Heidelberg. Springer-Verlag.
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
702