Differential Evolution for Multiobjective Optimization of Process Design Problems
Antonio Ochoa-Robles, Catherine Azzaro-Pantel, Serge Domenech
2014
Abstract
Optimization is a highly important area in chemical engineering, particularly for process design that is generally formulated as a mixed and non-linear problem with several competing objectives. A way to tackle the problem is to couple multiobjective optimization based on evolutionary algorithms with a process simulator. This situation may yet lead to prohibitive computational time as the number of objectives increases. In this paper, the potential of multiobjective differential evolution (MODE) is tested with three different stopping criteria. The performance of MODE is compared with the results obtained with a variant of NSGA II. The performance metric is based on the number of evaluations used to get the Pareto front. The results show that the combination of an efficient algorithm and the stopping criterion helps to reduce the optimization time but its choice may affect the results. As far as multiobjective is concerned, it must be emphasized that the final solution is the result of compromise that the decision maker must be aware.
References
- Abbass, H. A., Sarker, R., Newton, C., 2001. PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems, in: Evolutionary Computation, 2001. Proceedings of the 2001 Congress On. pp. 971-978.
- Angira, R., Babu, B. V., 2006. Optimization of process synthesis and design problems: A modified differential evolution approach. Chem. Eng. Sci. 61, 4707-4721.
- Aspen HYSYS® - AspenTech [WWW Document], 2013. URL http://www.aspentech.com/hysys/ (accessed 6.11.13).
- Aspen One® - AspenTech [WWW Document], 2013. URL http://www.aspentech.com/products/v8-release/ (accessed 6.11.13).
- Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol. Comput. IEEE Trans. 6, 182-197.
- Feoktistov, V., 2006. Differential evolution: in search of solutions. Springer.
- Gen, M., Cheng, R., Gen, M., Cheng, R., 1999. Genetic Algorithms and Engineering Optimization. John Wiley & Sons, Inc., Hoboken, NJ, USA.
- Goel, T., Stander, N., 2010. A non-dominance-based online stopping criterion for multi-objective evolutionary algorithms. Int. J. Numer. Methods Eng. 84, 661-684.
- Gomez, A., Pibouleau, L., Azzaro-Pantel, C., Domenech, S., Latgé, C., Haubensack, D., 2010. Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology. Energy Convers. Manag. 51, 859-871.
- Jones, D. F., Mirrazavi, S. K., Tamiz, M., 2002. Multiobjective meta-heuristics: An overview of the current state-of-the-art. Eur. J. Oper. Res. 137, 1-9.
- Kallrath, J., 2000. Mixed integer optimization in the chemical process industry: Experience, potential and future perspectives. Chem. Eng. Res. Des. 78, 809- 822.
- Lai, Y.-J., Liu, T.-Y., Hwang, C.-L., 1994. TOPSIS for MODM. Eur. J. Oper. Res. 76, 486-500.
- Martí, L., García, J., Berlanga, A., Molina, J. M., 2007. A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms, in: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation. pp. 2835-2842.
- Onwubolu, G. C., Babu, B. V., 2004. New optimization techniques in engineering. Springer.
- Ouattara, A., Pibouleau, L., Azzaro-Pantel, C., Domenech, S., Baudet, P., Yao, B., 2012. Economic and environmental strategies for process design. Comput. Chem. Eng. 36, 174-188.
- Papalexandri, K. P., Dimkou, T. I., 1998. A Parametric Mixed-Integer Optimization Algorithm for Multiobjective Engineering Problems Involving Discrete Decisions. Ind. Eng. Chem. Res. 37, 1866- 1882.
- Papoulias, S. A., Grossmann, I. E., 1983. A structural optimization approach in process synthesis-III: total processing systems. Comput. Chem. Eng. 7, 723-734.
- Price, K. V., 1996. Differential evolution: a fast and simple numerical optimizer, in: Fuzzy Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the North American. pp. 524-527.
- PROSIM [WWW Document], 2013. URL http://www.prosim.net/fr/index.php (accessed 6.11.13).
- Rangaiah, G. P., 2009. Multi-Objective Optimization: Techniques and Applications in Chemical Engineering. World Scientific.
- Ren, L., Zhang, Y., Wang, Y., Sun, Z., 2010. Comparative Analysis of a Novel M-TOPSIS Method and TOPSIS. Appl. Math. Res. EXpress.
- Robic, T., Filipic, B., 2005. DEMO: Differential evolution for multiobjective optimization, in: Evolutionary Multi-Criterion Optimization. Springer, pp. 520-533.
- Storn, R., 1996. On the usage of differential evolution for function optimization, in: Fuzzy Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the North American. pp. 519-523.
Paper Citation
in Harvard Style
Ochoa-Robles A., Azzaro-Pantel C. and Domenech S. (2014). Differential Evolution for Multiobjective Optimization of Process Design Problems . In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-017-8, pages 226-232. DOI: 10.5220/0004833102260232
in Bibtex Style
@conference{icores14,
author={Antonio Ochoa-Robles and Catherine Azzaro-Pantel and Serge Domenech},
title={Differential Evolution for Multiobjective Optimization of Process Design Problems},
booktitle={Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2014},
pages={226-232},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004833102260232},
isbn={978-989-758-017-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Differential Evolution for Multiobjective Optimization of Process Design Problems
SN - 978-989-758-017-8
AU - Ochoa-Robles A.
AU - Azzaro-Pantel C.
AU - Domenech S.
PY - 2014
SP - 226
EP - 232
DO - 10.5220/0004833102260232