ACKNOWLEDGEMENTS
We want to express our gratitude to Tania Farinella,
Matteo Abbruzzo and Olga Kryukova, master stu-
dents in Computer Engineering and Science at the De-
partment of Engineering “Enzo Ferrari” at University
of Modena and Reggio Emilia for their contribution
in term of implementation of the first and second ver-
sion of the system (without and with LDA) and for
their support during the evaluation of the system.
Particular appreciation goes to Thomas Werner
and Andreas Lahr
20
, founders of vfree.it, for their
suggestions and valuable comments on the paper.
REFERENCES
Adomavicius, G. and Tuzhilin, A. (2005). Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
on Knowl. and Data Eng., 17(6):734–749.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of Machine Learning Re-
search, 3:993–1022.
Debnath, S., Ganguly, N., and Mitra, P. (2008). Feature
weighting in content based recommendation system
using social network analysis. In Proceedings of the
17th international conference on World Wide Web,
WWW ’08, pages 1041–1042, New York, NY, USA.
ACM.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society
for Information Science, 41(6):391–407.
Dumais, S. T. (2004). Latent semantic analysis. An-
nual Review of Information Science and Technology,
38(1):188–230.
Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. (2011).
Collaborative filtering recommender systems. Found.
Trends Hum.-Comput. Interact., 4(2):81–173.
Farinella, T., Bergamaschi, S., and Po, L. (2012). A non-
intrusive movie recommendation system. In OTM
Conferences (2), pages 736–751.
Gemulla, R., Nijkamp, E., Haas, P. J., and Sismanis, Y.
(2011). Large-scale matrix factorization with dis-
tributed stochastic gradient descent. In Proceedings
of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’11,
pages 69–77, New York, NY, USA. ACM.
Griffiths, T., Steyvers, M., and Tenenbaum, J. (2007). Top-
ics in semantic representation. Psychological Review,
114(2):211–244.
Gunawardana, A. and Shani, G. (2009). A survey of ac-
curacy evaluation metrics of recommendation tasks.
The Journal of Machine Learning Research, 10:2935–
2962.
20
thomas.werner@vfree.tv, andreas.lahr@vfree.tv
Jin, X., Mobasher, B., and Zhou, Y. (2005). A web rec-
ommendation system based on maximum entropy. In
ITCC (1) , pages 213–218. IEEE Computer Society.
Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8):30–37.
Krestel, R., Fankhauser, P., and Nejdl, W. (2009). La-
tent dirichlet allocation for tag recommendation. In
Bergman, L. D., Tuzhilin, A., Burke, R. D., Felfernig,
A., and Schmidt-Thieme, L., editors, RecSys, pages
61–68. ACM.
Lee, M. D. and Welsh, M. (2005). An empirical evaluation
of models of text document similarity. In Proceed-
ings of the 27th Annual Conference of the Cognitive
Science Society, CogSci2005, pages 1254–1259. Erl-
baum.
Moshfeghi, Y., Piwowarski, B., and Jose, J. M. (2011).
Handling data sparsity in collaborative filtering using
emotion and semantic based features. In Proceedings
of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’11, pages 625–634, New York, NY, USA.
ACM.
Musto, C. (2010). Enhanced vector space models for
content-based recommender systems. In Proceedings
of the Fourth ACM Conference on Recommender Sys-
tems, RecSys ’10, pages 361–364, New York, NY,
USA. ACM.
Navigli, R. (2009). Word sense disambiguation: A survey.
ACM Comput. Surv., 41(2).
Park, L. A. F. and Ramamohanarao, K. (2009). An analysis
of latent semantic term self-correlation. ACM Trans.
Inf. Syst., 27(2):8:1–8:35.
Po, L. and Sorrentino, S. (2011). Automatic generation
of probabilistic relationships for improving schema
matching. Inf. Syst., 36(2):192–208.
Rashid, A. M., Karypis, G., and Riedl, J. (2008). Learn-
ing preferences of new users in recommender systems:
an information theoretic approach. SIGKDD Explor.
Newsl., 10(2):90–100.
ˇ
Reh
˚
u
ˇ
rek, R. and Sojka, P. (2010). Software Framework
for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta.
ELRA. http://is.muni.cz/publication/884893/en.
Salton, G., Wong, A., and Yang, C. S. (1975). A vector
space model for automatic indexing. Commun. ACM,
18:613–620.
Shi, Y., Larson, M., and Hanjalic, A. (2013). Mining con-
textual movie similarity with matrix factorization for
context-aware recommendation. ACM Trans. Intell.
Syst. Technol., 4(1):16:1–16:19.
Sorrentino, S., Bergamaschi, S., Gawinecki, M., and Po,
L. (2010). Schema label normalization for improving
schema matching. Data Knowl. Eng., 69(12):1254–
1273.
ComparingTopicModelsforaMovieRecommendationSystem
183