Probabilistic Object Identification through On-demand Partial Views

Susana Brandão, Manuela Veloso, João P. Costeira

2014

Abstract

The current paper addresses the problem of object identification from multiple 3D partial views, collected from different view angles with the objective of disambiguating between similar objects. We assume a mobile robot equipped with a depth sensor that autonomously grasps an object from different positions, with no previous known pattern. The challenge is to efficiently combine the set of observations into a single classification. We approach the problem with a sequential importance resampling filter that allows to combine the sequence of observations and that, by its sampling nature, allows to handle the large number of possible partial views. In this context, we introduce innovations at the level of the partial view representation and at the formulation of the classification problem. We provide a qualitative comparison to support our representation and illustrate the identification process with a case study.

References

  1. Bronstein, M. M. and Kokkinos, I. (2010). Scale-invariant heat kernel signatures for non-rigid shape recognition. In CVPR.
  2. Coltin, B. and Veloso, M. (2011). Multi-observation sensor resetting localization with ambiguous landmarks. In AAAI.
  3. Czyz, J., Ristic, B., and Macq, B. (2007). A particle filter for joint detection and tracking of color objects. IVC.
  4. Hundelshausen, F. V. and Veloso, M. (2007). Active monte carlo recognition. In GCAI.
  5. Ip, C. Y., Lapadat, D., Sieger, L., and Regli, W. C. (2002). Using shape distributions to compare solid models. SMA.
  6. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. (2011). Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. UIST.
  7. Johnson, A. E. and Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3d scenes. PAMI.
  8. Mahmoudi, M. and Sapiro, S. (2009). Three-dimensional point cloud recognition via distributions of geometric distances. Graphical Models.
  9. Okada, K., Kojima, M., Tokutsu, S., Maki, T., Mori, Y., and Inaba, M. (2007). Multi-cue 3d object recognition in knowledge-based vision-guided humanoid robot system. In IROS.
  10. Okuma, K., Taleghani, A., Freitas, N. D., Freitas, O. D., Little, J. J., and Lowe, D. G. (2004). A boosted particle filter: Multitarget detection and tracking. In ECCV.
  11. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002). Shape distributions. ACM Trans. Graph.
  12. Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In IROS.
  13. Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In ICRA.
  14. Sun, J., Ovsjanikov, M., and Guibas, L. (2009). A concise and provably informative multi-scale signature based on heat diffusion. In SGP.
  15. Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric framework for nonlinear dimensionality reduction. Science.
  16. Wohlkinger, W. and Vincze, M. (2011). Ensemble of shape functions for 3d object classification. In ROBIO.
Download


Paper Citation


in Harvard Style

Brandão S., Veloso M. and Costeira J. (2014). Probabilistic Object Identification through On-demand Partial Views . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 717-722. DOI: 10.5220/0004855507170722


in Bibtex Style

@conference{visapp14,
author={Susana Brandão and Manuela Veloso and João P. Costeira},
title={Probabilistic Object Identification through On-demand Partial Views},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={717-722},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004855507170722},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Probabilistic Object Identification through On-demand Partial Views
SN - 978-989-758-009-3
AU - Brandão S.
AU - Veloso M.
AU - Costeira J.
PY - 2014
SP - 717
EP - 722
DO - 10.5220/0004855507170722