
VLSI Wavelet Denoising of Neural Signals
Critical Appraisal of Different Algorithmic Solutions for Threshold Estimation

Nicola Carta, Danilo Pani and Luigi Raffo
DIEE - Dept. of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 3, 09123 Cagliari, Italy

Keywords: Wavelet Denoising, Neural Signal Processing, FPGA, Design Tools.

Abstract: Wavelet denoising represents a common preprocessing step for several biomedical applications exposing low
SNR. When the real-time requirements are joined to the fulfilment of area and power minimization for wear-
able/implantable applications, such as for neuroprosthetic devices, only custom VLSI implementations can
be adopted. In this case, every part of the algorithm should be carefully tuned. The usually overlooked part
related to threshold estimation is deeply analysed in this paper, in terms of required hardware resources and
functionality, exploiting Xilinx System Generator for the design of the architecture and the co-simulation. The
analysis reveals how the widely used Median Absolute Deviation (MAD) could lead to hardware implementa-
tions highly inefficient compared to other dispersion estimators demonstrating better scalability, relatively to
the specific application.

1 INTRODUCTION

Real-time biomedical signal processing aims at ex-
tracting the information embedded into a physiolog-
ical measurement, typically in order to aid the diag-
nosis, monitor a patient or control an electronic de-
vice that, at a certain level, interacts with the patient.
With the increasing integration capabilities and the
advancements in CMOS processes, it is progressively
more common to require wearable or implantable
electronics for such a processing. Applications like
electrocardiography (ECG) (Baig et al., 2013) and
electroencephalography (EEG) (Casson et al., 2010)
often require these features. However, the low band-
width of these signals and the relatively low num-
ber of channels (except for very specific applications
like potential surface mapping or high density EEG)
impose looser constraints compared to other applica-
tions like invasive neural signal processing.

The aforementioned requirements can be solved
by the development of a low-power Application
Specific Integrated Circuit (ASIC). Compared to
microprogrammed solutions involving the use of
microcontrollers or low-power digital signal pro-
cessors (DSP), ASIC design requires highly spe-
cific skills and a longer development time (Mon-
tani et al., 2003), unfortunately leading to non-
flexible architectures. Some tools for automatic
creation of hardware description language (HDL)

designs have been presented to address such is-
sues (e.g. ORCC, http://orcc.sourceforge.net/ (Nezan
et al., 2012) or the commercial Xilinx System Gener-
ator, http://www.xilinx.com/tools/sysgen.htm). Even
though unable to significantly address the low-power
requirements, these tools enable rapid prototyping
with the possibility of exploiting an alternative lan-
guage/method rather than HDL in the design phase
(Palumbo et al., 2012). The integration with well-
known tools such as Simulink enables a faster de-
velopment and, leveraging on parameterized HDL li-
braries, good performance in terms of area and power
can be also achieved.

In this paper, Xilinx System Generator has been
chosen for its rapid prototyping advantage, evaluat-
ing the main performance figures associated to the
hardware implementation of a wavelet denoising al-
gorithm used for neural signal processing (Diedrich
et al., 2003). The ASIC implementation of this algo-
rithm would be particularly useful in a multichannel
neural signal processing context, especially for neu-
ral prostheses (Citi et al., 2008) which must be able
to work exploiting batteries as power source. At the
same time, it allows highlighting the possible pitfalls
hidden in the straightforward creation of an architec-
ture from its typical algorithmic version. In particular,
the threshold estimation stage is marginally consid-
ered in the largest part of the applications, usually ex-
ploiting fixed precomputed thresholds (Kuzume et al.,

45Carta N., Pani D. and Raffo L..
VLSI Wavelet Denoising of Neural Signals - Critical Appraisal of Different Algorithmic Solutions for Threshold Estimation.
DOI: 10.5220/0004865700450052
In Proceedings of the International Conference on Biomedical Electronics and Devices (BIODEVICES-2014), pages 45-52
ISBN: 978-989-758-013-0
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2004) or preferably opting for the estimation of the
standard deviation of the noise by the Median Abso-
lute Deviation (MAD), known to be a robust estima-
tor of the dispersion in presence of outliers. Such an
approach is challenged here, revealing how it could
lead to very inefficient or even infeasible architec-
tures. The discussion is supported by the results in
terms of a preliminary FPGA implementation, eval-
uating the performance onto an open neural signals
database (Quiroga et al., 2004).

2 WAVELET DENOISING

Wavelet denoising is a non-linear filtering technique
usually adopted in presence of a Gaussian noise
whose spectrum overlaps the useful signal bandwidth.
It consists of a sub-band decomposition of the sig-
nal, thresholding (introducing the non-linearity) and
recomposition. The input signal is decomposed in
its low-frequency and high-frequency bands, respec-
tively called “approximation” and “detail”. The ap-
proximation is split again in the same way repeatedly
until the levelN of decomposition has been reached.
Being the Nyquist frequency of the approximation
one half of that of the incoming signal, the sample rate
can be reduced (decimated approach) so that the same
filters can be used in every level. Alternatively, the
sample rate can be preserved upsampling in each level
the filter coefficients of the previous one, in the so
calledalgorithmeà trousscheme (Holschneider et al.,
1990). Such a redundant approach leads to the same
time resolution in every level and to time invariance
(Cohen and Kovacevic, 1996). When theN-th level
has been computed, all the details are thresholded ei-
therhard or soft, respectively whether the samples of
the detail signals are simply cleared to zero if below
the threshold or also the samples above threshold are
modified by subtracting the value of the threshold it-
self.

Recomposition exploits the mirrored version of
the corresponding decomposition filters (orthogonal
wavelets) or different filters (bi-orthogonal wavelets),
every couple of filters taking an approximation and
the related thresholded detail, producing an approx-
imation signal by averaging sample-wise their out-
puts. Only Finite Impulse Response (FIR) filters are
used, whose impulse responses depend on the chosen
mother wavelet.

2.1 Threshold Estimation

Several methods for calculating the threshold have
been presented in literature. The choice of the thresh-

old influences the quality of the denoising so much
that even data-specific approaches have been pre-
sented so far (Medina et al., 2003). The threshold can
be fixed (Kuzume et al., 2004) or adaptive (Radovan
et al., 2013), the same or different for all the details.
In particular, adaptive thresholds are typically com-
puted estimating therms or the standard deviationσ
of the signal at the different levels of the decomposi-
tion and then correcting it by a multiplicative factor.
Different multiplicative factors have been derived and
are preferred by different authors, as for the Minimax
(Citi et al., 2008), Stein’s Unbiased Risk (Mahmoud
et al., 2008) or Universal (Bahoura and Ezzaidi, 2012)
methods. Due to the robustness to the presence of out-
liers, usually the preferred method is to estimateσ by
the median absolute deviation (MAD), defined as:

MAD= mediani (|Xi −medianj(Xj)|) (1)

Due to the high-pass nature of the detail signals,
it is common to implement the MAD as simply the
median of the absolute value of the details:

MAD= medianj (|Xj |) (2)

It has been proved thatMAD ≈ 0.6745σ. Nev-
ertheless, the MAD is preferred for the aforemen-
tioned robustness, especially in neural signal process-
ing, where the neural spikes can be considered as
partly composed of outlier samples in recordings with
a good signal to noise ratio (SNR). Such an approach,
which is perfect for off-line processing, overlooks the
real computational complexity of the median opera-
tor in case of continuous adaptation. This approach
has been challenged by some authors trying to de-
velop efficient implementations for biomedical signal
processing (Pani et al., 2011; Zhang et al., 2011). In
the following sections, the adoption of the MAD and
the sample standard deviation on a sliding window is
compared not only in terms of denoising quality, but
also in terms of feasibility in the perspective of a low-
power real-time implementation as needed for an im-
plantable unit for the control of a neuroprosthetic de-
vice (Citi et al., 2008), using as a testbed a prototypi-
cal FPGA implementation programmed exploiting the
Xilinx System Generator tool.

3 METHODS

As starting point, we consider a stationary wavelet
denoising trellis (“algorithmeà trous”). In order to
keep low the memory requirements in the perspective
FPGA implementation, the simple Haar wavelet has
been chosen, requiring very small filters. Considering
an input signal sampled at 12kHz as in (Pani et al.,

BIODEVICES�2014�-�International�Conference�on�Biomedical�Electronics�and�Devices

46

2011), with 4 levels and removing the last approxi-
mation signal, a high-pass overall behaviour able to
reject the low-frequency components below 375Hz,
outside the bandwidth of neural signal, can be ob-
tained. In order to evaluate the impact of the thresh-
olding stage, no specific optimizations have been
made at the level of the filter banks for decomposi-
tion and recomposition. The FIR filters have been
implemented in the transposed direct-form I, insert-
ing registers with delay equal to increasing powers of
2 between the internal adders to perform the required
oversampling process in the different stages.

As we already stated above, the choice of the
threshold can have an impact on the quality of the de-
noising. However the repercussions in terms of hard-
ware requirements need to be carefully evaluated, as
we will discuss hereafter. In this exemplary applica-
tion, we consider two alternative solutions which are
based respectively on the calculation of:

• the MAD of the signal, using either a combinato-
rial or an iterative approach;

• the sample standard deviationσ of the signal.

As scaling factor, the Universal one has been
adopted, so that:

θ =
MAD

0.6745

√

2logM (3)

in the first case, and:

θ = σ
√

2logM (4)

in the second one.M is the length of the signal frame
in terms of number of samples.

In order to provide adaptiveness in an on-line sce-
nario, both the first and the second solution have been
adapted to work on a sliding window of variable size,
with an overlap of three quarters of the overall win-
dow length. In the first case, this requires sorting the
new window every time in order to extract the me-
dian, however in the second case a faster solution can
be implemented. Starting from the technique used in
(Pani et al., 2011) and thanks to the zero-mean nature
of the high-pass detail signals, for eachN new input
samples in the window, the related sum of squares for
the j-th decomposition level is computed as:

sj =
N

∑
n=1

d2
j [n] (5)

and then used to determineσ for the 4 times larger
windows as:

σ =

√

√

√

√

1
4N−1

4

∑
k=1

sj (6)

Thanks to the sliding window approach, the
threshold value is updated everyN sampling periods
(M = 4×N). The longer the observation window, the
better the estimation accuracy, provided that instanta-
neous variations (neural spikes) do not influence the
threshold computation. Such a processing can be del-
egated to a host processor picking up the detail signals
samples at the filters output and computing the var-
ious thresholds. However, when a non-microcoded
solution is pursued, because of the need to fulfil the
real-time and low-power constraints, threshold esti-
mation can be performed by dedicated cost-effective
hardware. In this case, the complexity depends on
both the chosen threshold estimation method and the
length of the observation windowM.

3.1 Architecture Design using Xilinx
System Generator

In order to evaluate the different solutions from
a hardware perspective, starting from a high-level
model with an acceptable complexity even for re-
searchers not accustomed to HDL modelling, it is pos-
sible to use tools such as Xilinx System Generator. In
this way, the user-friendly environment of Simulink
can be exploited both to create the hardware design
and to perform accurate co-simulations taking into ac-
count the hardware implementation of a part of the
system under test.

The tools allow to choose whether to use the hard-
ware blocks coded by the user (providing the HDL
file) or those provided by Xilinx. The latter only
require to define the internal signal representation
(fixed-point, unsigned or signed as 2’s complement,
etc.) as for the desired functionality, whereas the for-
mer must adhere to a standard interface mainly requir-
ing an enable signal for each input clock to synchro-
nize the modules inside the model. When the design
has been completely created, the set of the hardware
blocks can be mapped on a real FPGA board in order
to evaluate the percentage of used resources and the
behaviour by hardware/software co-simulations. This
is very useful to accelerate the simulation time com-
pared to the totally software case.

The wavelet denoising algorithm, created exploit-
ing the Xilinx System Generator tool, is shown in
Fig. 1. TheGateway Inand theGateway Outblocks
delimit the hardware part of the Simulink model,
defining the interface signals to be mapped on the var-
ious pins available on the FPGA. The System Gen-
erator block fixes the co-simulation parameters, the
Simulink system period, the target board to map the
hardware sub-model, and so on. In our tests, a Xilinx
Virtex-5 LX330 has been chosen for its considerable

VLSI�Wavelet�Denoising�of�Neural�Signals�-�Critical�Appraisal�of�Different�Algorithmic�Solutions�for�Threshold
Estimation

47

threshold_est4

In1 Out1

threshold_est3

In1 Out1

threshold_est2

In1 Out1

threshold_est1

In1 Out1

denoised

 Out

Terminator

Signal From
WS

easynoise01
Scope

Hard_Thres4

wc

thr
twc1

Hard_Thres3

wc

thr
twc1

Hard_Thres2

wc

thr
twc1

Hard_Thres1

wc

thr
twc1

H4(z)

In1 Out1

H4’(z)

In1 Out1

H3(z)

In2 Out2

H3’(z)

In2 Out2

H2(z)

In1 Out1 H2’(z)

In1 Out1

H1(z)

In1 Out1

H1’(z)

In1 Out1

G4(z)

In1 Out1

G4’(z)

In1 Out1

G3(z)

In2 Out2

G3’(z)

In2 Out2

G2(z)

In1 Out1

G2’(z)

In1 Out1

G1(z)

In2 Out2

G1’(z)

In2 Out2

Down Sample4

z−1

↓266752

Down Sample3

z−1

↓266752

Down Sample2

z−1

↓266752

Down Sample1

z−1

↓266752

Delay2

z−14

Delay1

z−12

Delay

z−8

Data In

 In

CMult6

x 0.5

CMult5

x 0.5

CMult4

x 0.5

CMult3

x 0.5

CMult2

x 0.5

CMult1

x 0.5

AddSub3

a

b
a + b

AddSub2

a

b
a + b

AddSub1

a

b
a + b

System
Generator

Figure 1: Simulink model of the chosen wavelet denoising scheme using System Generator blocks.

thr
1

Mult

a

b
a × b

Med

x Med(x)

Constant

4.27459716796875

Abs

x abs(x)

x
1

Figure 2: The Simulink Model of the Threshold Estimator
block with the constant defined as for the case of M=64
samples per window.

Med(x)
1

Sort9

A

B

H

L

Sort8

A

B

H

L

Sort7

A

B

H

L

Sort6

A

B

H

L

Sort5

A

B

H

L

Sort4

A

B

H

L

Sort3

A

B

H

L

Sort23

A

B

H

L

Sort22

A

B

L

Sort21

A

B

H

Sort20

A

B

L

Sort2

A

B

H

L

Sort19

A

B

H

L

Sort18

A

B

H

Sort17

A

B

L

Sort16

A

B

H

L

Sort15

A

B

H

L

Sort14

A

B

H

Sort13

A

B

H

L

Sort12

A

B

H

L

Sort11

A

B

H

L

Sort10

A

B

H

L

Sort1

A

B

H

L

Sort

A

B

H

L

Delay9

z−1

Delay8

z−1

Delay7

z−1

Delay6

z−1

Delay12

z−1

Delay11

z−1

Delay10

z−1

CMult8

x 0.5

AddSub

a

b
a + b

x
1

Figure 3: The Simulink Model of the sorter using an un-
folded combinatorial approach for windows with M=8 sam-
ples.

amount of available resources.

3.2 Threshold Estimator
Implementation

In case theMAD is used, the System Generator im-
plementation involves the extraction of the absolute
value of each input samples, the computation of the
median value of the incoming windows ofM input
samples and the multiplication by a constant, as de-
fined in (3). The corresponding Simulink model is
depicted in Fig. 2. The median value calculation re-
quires the hardware implementation of a sorting al-
gorithm which represents a costly operation from a
hardware point of view.

A first possible solution can be the unfolded sorter
presented in (Bahoura and Ezzaidi, 2012), for which

the Simulink model considering windows ofN = 8
input samples is presented in Fig. 3. The basic sorting
cell makes the comparison between two inputsA and
B and swaps them ifA< B. It is possible to demon-
strate that, if the comparators work in parallel,M−1
steps are sufficient to properly perform the sorting of
M elements. The output is updated in a combinatorial
way every time a sample arrives in input at the sam-
pling frequencyfs, after the proper shift of the values
saved into the registers needed to prepare the input
samples for the processing. TheMAD is computed as
the arithmetic mean of the two central elements of the
sorted array for an even number of samples.

This solution presents several pitfalls from a hard-
ware implementation perspective. In particular there
is a clear scalability issue related to the enlargement
of the observation window. In this case, the increas-
ing internal critical path determined by the cascade
of comparators limits the maximum operating fre-
quency, beyond the penalty associated to the huge
amount of hardware resources.

To overcome such problems, an iterative (folded)
approach to the sorter able to reuse the same resources
at each step, similar to that proposed in (Martinez
et al., 2005) about the Burrows-Wheeler transform
but adapted to the wavelet denoising case, can be
used. In this case, the sorting strategy uses only two
levels of comparators. At the beginning, the swaps are
performed only for the registers related to odd adja-
cencies, activating only the first level of comparators.
If the vector is not yet sorted, at the next iteration only
the comparators of the second level are active, and so
on until the sorting process is completed. It is possi-
ble to demonstrate that the number of necessary steps
is M/2 if M is the number of samples to sort. Figure 4
shows the iterative scheme.

The swpsignal coming out from the comparator
block is used to specify that the two inputs have been
swapped. The samples in input to the parallel sorter,
belonging to each observation window, are temporar-
ily saved into a single-port memory. Immediately af-
ter the last sample of the window has been saved in

BIODEVICES�2014�-�International�Conference�on�Biomedical�Electronics�and�Devices

48

median
2

Ready_Flag
1

we2

A
sample_counter

clr

en
hit8

reset8

RST

reset7

RST

reset6

RST

RST

reset58

RST

RST

reset5

RST

reset4

RST

reset3

RST

reset2

RST

reset1

RST

reset

RST

d

rst
qz−1

register

d

rst
qz−1

median calculator

en

rst

a

b

medianaout

MED_B

MED_A

level activator

en_comp

1st lev

2nd lev

en_median

C

delayed_ready flag

B

Subsystem3

In1

In2

In3

In4

In5

In6

In7

lev_sel

Out1

Single Port RAM

addr

data

we

rst

z−1

Register7

d

rst
qz−1

Register6

d

rst
qz−1

Register5

d

rst
qz−1

Register4

d

rst
qz−1

Register3

d

rst
qz−1

Register2

d

rst
qz−1

Register1

d

rst
qz−1

Register

d

rst
qz−1

Mux7

sel
d0
d1

Mux6

sel
d0
d1

Mux5

sel
d0
d1

Mux4

sel
d0
d1

Mux3

sel
d0
d1

Mux2

sel
d0
d1

Mux1

sel
d0
d1

Mux

sel
d0
d1

Logical2

and

Goto6

LEV_SEL

Goto5

SEL
Goto4

EN2

Goto3

EN1

Goto2

MED_B

Goto1

MED_A

From9

[SEL]

From8

[SEL]

From7

[SEL]

From6

[EN1]

From5

[EN1]

From4

[EN1]

From3

[EN1]

From2

[EN2]

From14

[LEV_SEL]

From13

[SEL]

From12

[SEL]

From11

[SEL]

From10

[SEL]

From1

[EN2]

From

[EN2]

Comparator7

C

A1

B1

swp

A

B

Comparator6

C

A1

B1

swp

A

B

Comparator5

C

A1

B1

swp

A

B

Comparator4

C

A1

B1

swp

A

B

Comparator3

C

A1

B1

swp

A

B

Comparator2

C

A1

B1

swp

A

B

Comparator1

C

A1

B1

swp

A

B

we
6

address
5

en input
4

lev selector
3

Data
2

rst
1

en_median

Figure 4: The Simulink Model of the sorter using an itera-
tive approach for windows with M=8 samples.

Out1
1

to−sqrt

 Out

sum

d

rst
qz−1

sel_generator

rst

clr_reg

hit_sample

sel

sample counter

clr

en
hit64

rst

 In

new sample

rst hit_sample

count4

clr

en
hit4

controller

rst

hit_sample

hit_window

hit_buffer

addr_inc

en_mul

en_add

en_count4

clr_count4

clr_reg

we

en_s_adder

address incr

inc

rst
address

Step

Single Port RAM

addr

data

we

rst

z−1

Register7

d

rst
qz−1

Register6

d

rst
qz−1

Register5

d

rst
qz−1

Register4

d

rst
qz−1

Register3

d

rst
qz−1

Register2

d

rst
qz−1

Mux1

sel

d0

d1

Mux

sel

d0

d1

Mult

a

b

en

a × bz−1

Logical

or

Goto1

A

Goto

RST

From9

A

From8

A

From7

A

From6

RST

From5

RST

From4

RST

From3

RST

From2

RST

From14

RST

From11

RST

From10

RST

From1

RST

From

RST

Fcn

f(u)

Constant1

1

Constant

0

AddSub3

a

b

en

a + bz−1

AddSub2

a

b

en

a + bz−1

AddSub1

a

b

en

a + bz−1

AddSub

a

b

en

a + bz−1

In1
1

square

dataout

current sample

data_in

Nth

Figure 5: The Simulink Model of the Threshold Estimator
block based on the calculation of the sample standard devi-
ation.

this memory, its content is copied into the registers
and the sorting process can start. When all theswp
signals are equal to 0 during the last iteration, the in-
put vector is correctly sorted. A finite state machine,
one for eachThreshold Estimatorblock (i.e. one for
each decomposition level), is used to control the vari-
ous phases of the process.

In order to compare the hardware characteristics
of these models of threshold estimation based on the
MAD against those of a traditional sample standard
deviation as described above, an hardware model has
been designed also for such an approach. Figure 5
shows the Simulink model for this implementation.
Every time an input sample arrives, it is squared and
added to the current value ofsj . After N samples, the
final value ofsj is saved in one of the 4 locations of
the single-port RAM used as circular buffer in order
to determine the correct value ofσ over the sliding
window.

Regardless the chosen approach, the value of the
thresholdθ is sent in input to theThresholderblock,
able to apply the hard thresholding on the detail sam-
ples. It should be also considered that the value ofθ
is different for the various levels.

4 EXPERIMENTAL RESULTS

Before analysing the results in terms of hardware re-
sources which are necessary for the different solu-
tions presented above, such solutions have been eval-
uated from a functional perspective. A publicly avail-
able dataset of simulated neural signals obtained from
real physiological action potentials recorded from an-
imals at the central nervous system level has been
used (Quiroga et al., 2004). The synthetic signals are
obtained by linearly mixing an artificial sequence of
real spikes from three neurons to other spikes at ran-
dom times and amplitudes, representative of the back-
ground activity (of tunable intensity) of the neurons at
a greater distance from the recording electrodes. The
sampling frequency has been scaled to 12kHz and the
useful bandwidth is declared to be in the range 300Hz
- 3kHz.

4.1 Functional Evaluation

The different versions of the whole wavelet denoising
system have been mapped on the target FPGA in or-
der to evaluate, by hardware-software co-simulations,
the system performance under real conditions. Fig-
ure 6 shows in the first row the neural signal with a
low level of background noise used as input for the
two hardware implementations based on the calcula-
tion of the MAD and of theσ (the two versions of
the one implementing theMAD produce the same re-
sults). The next rows present the related outputs con-
sidering observation windows ofM = 4×64 samples.

It is possible to see that for both solutions, the
wavelet denoising is able to remove, after an initial
transient, the background noise added to the neural
signal without cutting significant spikes. The same
performance can be achieved using the same input
signal but with a stronger background noise for which
it is difficult to identify the various spikes on the raw
signal, as can be shown in the first row of the Fig. 7.
Even using neural signals with very low SNR, the two
implementations behave similarly preserving the rel-
evant spikes.

Then, we considered the possibility of enlarging
the observation window in order to provide a more
significant frame for computing the statistics on the
signal. For example, Fig. 8 shows the outputs of the

VLSI�Wavelet�Denoising�of�Neural�Signals�-�Critical�Appraisal�of�Different�Algorithmic�Solutions�for�Threshold
Estimation

49

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 in
pu

t

(a) Input Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 M

A
D

(b) WD output using theMAD-based threshold

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 S

td
 D

ev

(c) WD output using theσ-based threshold

Figure 6: Wavelet Denoising input and outputs: low level
noise, N=64 samples.

two solutions usingMAD andσ in the case of win-
dows ofN = 128 samples and a low level of back-
ground noise. The initial transient is obviously longer
in comparison to the previous cases.

We also analysed the trend of the thresholds in
output from the same decomposition level for differ-
ent observation window lengths, for the two hardware
solutions. The aim is to verify which is the minimum
value of N, considering a sliding window length of
4×N, that allows obtaining a good denoising.

As can be noticed from Fig. 9, after a variable
transient period according to the chosen value ofN,
the longer the observation window the better the sta-
bility of the threshold, not influenced by the presence
of the neural spikes of interest. In fact, in the case of
N = 128, the threshold estimation assumes an almost
constant trend; the goal should be that of selecting
the solution which provides the best compromise in
terms of threshold estimation and required hardware
resources.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 in
pu

t

(a) Input Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 M

A
D

(b) WD output using theMAD-based threshold

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 S

td
 D

ev

(c) WD output using theσ-based threshold

Figure 7: Wavelet Denoising input and outputs: high level
noise, N=64 samples.

4.2 Hardware Figures of Merit

Thanks to the possibilities offered by Xilinx System
Generator, also to map the implemented designs on
real hardware, in this case the Xilinx FPGA Virtex-5
LX330 device, we evaluated pros and cons in terms
of necessary hardware resources for the different so-
lutions presented above. The final goal is to determine
which is the best solution allowing to achieve a good
accuracy with limited area and power consumption, in
the light of the realization of a VLSI chip implement-
ing such a processing stage for an implantable unit in
the neuroprosthetic field.

Synthesis results are presented in Table 1, which
shows the percentage of available slices and Look-up
Tables (LUTs) needed for the three considered thresh-
old estimation blocks only, since the remainder of the
wavelet denoising implementation is the same regard-
less of this stage.

The solution based on the combinatorial (un-
folded) MAD implementation, as highlighted in Ta-
ble 1, is absolutely inefficient, taking into account it

BIODEVICES�2014�-�International�Conference�on�Biomedical�Electronics�and�Devices

50

Table 1: FPGA synthesis results for theThreshold Estimatorvarying the length of the observation window.

N fmax[MHz] Slice Registers LUTs

σ
32 417.34 156 / 207360 (0.07%) 80 / 207360 (0.04%)
64 416.61 157 / 207360 (0.07%) 82 / 207360 (0.04%)
128 416.02 160 / 207360 (0.07%) 84 / 207360 (0.04%)

unfoldedMAD 8 417.08 558 / 207360 (0.27%) 20270 / 207360 (9.77%)

foldedMAD
32 242.78 2493 / 207360 (1.20%) 7164 / 207360 (3.45%)
64 246.70 4932 / 207360 (2.38%) 14377 / 207360 (6.93%)
128 221.42 9806 / 207360 (4.73%) 28861 / 207360 (13.91%)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 in
pu

t

(a) Input Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 M

A
D

(b) WD output using theMAD-based threshold

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−1

−0.5

0

0.5

1

Time [sec]

W
D

 o
ut

pu
t w

ith
 S

td
 D

ev

(c) WD output using theσ-based threshold

Figure 8: Wavelet Denoising input and outputs: low level
noise, N=128 samples.

has been presented only forN = 8, with the usual
4-times larger observation window. A rough esti-
mation of the hardware resources required in case
of N = 32 would lead to more than 330kLUT over
the 207360 available ones, thus exceeding the con-
siderable amount of physical resources on the target
FPGA. The huge amount of LUTs, compared to the
folded version, is incompatible with a real implemen-
tation in the context of this application, taking into
account that the observation window length should be
large enough to properly estimate the statistics of a
signal sampled at 12kHz.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

Time [sec]

T
hr

es
ho

ld
 A

m
pl

itu
de

N = 32
N = 64
N = 128

(a) MAD-based solution

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

Time [sec]

T
hr

es
ho

ld
 A

m
pl

itu
de

N = 32
N = 64
N = 128

(b) σ-based solution

Figure 9: Threshold variation over time using different
lengths of the observation window.

FPGA synthesis results demonstrate that the
wavelet denoising solution based on the threshold es-
timation by the sample standard deviation allows min-
imizing the necessary hardware resources regardless
the length of the observation window. Furthermore,
the usage of slices and LUTs of theMAD-based solu-
tion, even using a folded approach, is clearly incom-
patible with an efficient implementation of this pro-
cessing stage, especially compared to the same data
related to theσ-based implementations.

5 CONCLUSIONS

This paper highlights how the choice of the thresh-
old estimation technique, more than having an influ-
ence on the quality of the wavelet denoising algo-
rithm, has significant reverberations on the feasibility
and efficiency of a custom VLSI architecture aimed at
an implantable chip in the context of neural prosthe-
ses. The comparison between a sample standard devi-
ation and the widespreadMAD reveals similar func-

VLSI�Wavelet�Denoising�of�Neural�Signals�-�Critical�Appraisal�of�Different�Algorithmic�Solutions�for�Threshold
Estimation

51

tional performance with dramatically better character-
istic of the former in terms of hardware implementa-
tion, regardless theMAD is implemented as a combi-
natorial trellis as suggested by some authors or in a
more efficient folded version. The paper also stresses
the benefit of using hardware-software co-simulations
tools such as Xilinx System Generator for rapid proto-
typing and verification on FPGA, which represents a
value added for the research in rapidly evolving fields
such as neural engineering, overcoming the limits of
the traditional HDL coding.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding by the Region of Sardinia in the ELoRA
project (Fundamental Research Programme, L.R.
7/2007, grant agreement CRP-60544), by the Euro-
pean Commission in the NEBIAS project (FP7, FET
Proactive, grant agreement 611687), by Italian Gov-
ernment in the HANDBOT project (PRIN 2010/11,
prot. 2010YF2RY003) and by the Italian Ministry of
Health in the NEMESIS project (Young Researchers,
grant agreement 064/GR-2009-1591615).

REFERENCES

Bahoura, M. and Ezzaidi, H. (2012). FPGA-
implementation of discrete wavelet transform with
application to signal denoising.Circuits, Systems,
and Signal Processing, 31(3):987–1015.

Baig, M. M., Gholamhosseini, H., and Connolly, M. J.
(2013). A comprehensive survey of wearable and
wireless ECG monitoring systems for older adults.
Medical & Biological Engineering & Computing,
51(5):485–495.

Casson, A., Yates, D., Smith, S., Duncan, J., and Rodriguez-
Villegas, E. (2010). Wearable electroencephalogra-
phy. Engineering in Medicine and Biology Magazine,
IEEE, 29(3):44–56.

Citi, L., Carpaneto, J., Yoshida, K., Hoffmann, K.-P., Koch,
K. P., Dario, P., and Micera, S. (2008). On the use of
wavelet denoising and spike sorting techniques to pro-
cess electroneurographic signals recorded using intra-
neural electrodes.Journal of Neuroscience Methods,
172:294–302.

Cohen, A. and Kovacevic, J. (1996). Wavelets: the
mathematical background.Proceedings of the IEEE,
84(4):514–522.

Diedrich, A., Charoensuk, W., Brychta, R., Ertl, A., and
Shiavi, R. (2003). Analysis of raw microneurographic
recordings based on wavelet de-noising technique
and classification algorithm: wavelet analysis in mi-
croneurography.IEEE Trans Biomed Eng, 50(1):41–
50.

Holschneider, M., Kronland-Martinet, R., Morlet, J., and
Tchamitchian, P. (1990). A real-time algorithm for
signal analysis with the help of the wavelet transform.
In Wavelets, pages 286–297. Springer Berlin Heidel-
berg.

Kuzume, K., Niijima, K., and Takano, S. (2004). FPGA-
based lifting wavelet processor for real-time signal de-
tection.Signal Processing, 84(10):1931–1940.

Mahmoud, M. I., Dessouky, M. I. M., Deyab, S., and
Elfouly, F. H. (2008). Signal denoising by wavelet
packet transform on FPGA technology.Special Issue
of Ubiquitous Computing and Communication Jour-
nal Bioinformatics and Image.

Martinez, J., Cumplido, R., and Feregrino, C. (2005). An
FPGA-based parallel sorting architecture for the Bur-
rows Wheeler transform. InInternational Conference
on Reconfigurable Computing and FPGAs, ReConFig
2005.

Medina, C., Alcaim, A., and Jr., J. A. (2003). Wavelet de-
noising of speech using neural networks for threshold
selection.Electronics Letters, 39(25):1869–1871.

Montani, M., Marchi, L. D., Marcianesi, A., and Speciale,
N. (2003). Comparison of a programmable DSP and
FPGA implementation for a wavelet-based denoising
algorithm. InProc. IEEE 46th Midwest Symposium
on Circuits and Systems, volume 2, pages 602–605.

Nezan, J., Siret, N., Wipliez, M., Palumbo, F., and Raffo,
L. (2012). Multi-purpose systems: A novel dataflow-
based generation and mapping strategy. InProc. IEEE
International Symposium on Circuits and Systems (IS-
CAS), pages 3073–3076.

Palumbo, F., Carta, N., Pani, D., Meloni, P., and Raffo, L.
(2012). The multi-dataflow composer tool: genera-
tion of on-the-fly reconfigurable platforms.Journal of
Real-Time Image Processing, pages 1–17.

Pani, D., Usai, F., Citi, L., and Raffo, L. (2011). Impact of
the approximated on-line centering and whitening in
OL-JADE on the quality of the estimated fetal ecg. In
Proc. of the 5th International IEEE/EMBS Conference
on Neural Engineering (NER), pages 44–47.

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, Y. (2004). Un-
supervised spike detection and sorting with wavelets
and superparamagnetic clustering.Neural Comput.,
16(8):1661–1687.

Radovan, S., Saša, K., Dejan, K., and Goran, D. (2013). Op-
timization and implementation of the wavelet based
algorithms for embedded biomedical signal process-
ing. Computer Science and Information Systems,
10:502–523.

Zhang, M., Deng, R., Ma, Z., and Zhang, M. (2011). A
FPGA-based low-cost real-time wavelet packet de-
noising system. InProc. of 2011 Int. Conf. on
Electronics and Optoelectronics (ICEOE), volume 2,
pages V2–350–V2–353.

BIODEVICES�2014�-�International�Conference�on�Biomedical�Electronics�and�Devices

52

