Control of the p53 Protein - mdm2 Inhibitor System using Nonlinear Kalman Filtering
Gerasimos G. Rigatos, Efthymia G. Rigatou
2014
Abstract
A nonlinear feedback control scheme for the p53 protein - mdm2 inhibitor system is developed with the use of differential flatness theory and of nonlinear Kalman Filtering. It is shown that by applying differential flatness theory the protein synthesis model can be transformed into the canonical form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics and to compensate for modeling uncertainties and external disturbances that affect the p53-mdm2 system, the nonlinear Kalman Filter is re-designed as a disturbance observer. The proposed nonlinear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
References
- W. Abou-Jaoudé, M. Chavés and J. L. Gouzé, A theoretical exploration of birhythmicity in the p53-mdm2 network, INRIA Research Report No 7406, Oct. 2010.
- M. Bassevile and I. Nikiforov, Detection of abrupt changes: Theory and Applications, Prentice-Hall, 1993.
- S. Bououden, D. Boutat, G. Zheng, J. P. Barbot and F. Kratz, A triangular canonical form for a class of 0-flat nonlinear systems, International Journal of Control, Taylor and Francis, vol. 84, no. 2, pp. 261-269, 2011.
- J. Elias, L. Dimitrio, J. Clairambault and R. Natalini, The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate, Biochimica and Biophysica Acta - Proteins and proteomics, 2013.
- M. Fliess and H. Mounier, Tracking control and p-freeness of infinite dimensional linear systems, In: G. Picci and D.S. Gilliam Eds.,Dynamical Systems, Control, Coding and Computer Vision, vol. 258, pp. 41-68, Birkhaüser, 1999.
- M. Jahoor Alam, N. Fatima, G. R. Devi and R. K. Brojen, The enhancement of stability of P53 in MTBP induced p53-MDM2 regulatory network, Biosystems, Elsevier, vol. 110, pp. 74-83, 2012.
- B. Laroche, P. Martin, and N. Petit, Commande par platitude: Equations différentielles ordinaires et aux derivées partielles, Ecole Nationale Supérieure des Techniques Avancées, Paris, 2007.
- G. B. Leenders and J. A. Tuszynski, Stochastic and deterministic models cellular p53 regulation, Frontiers of Oncology, vol. 3, article No 64, 2013.
- J. Lévine, On necessary and sufficient conditions for differential flatness, Applicable Algebra in Engineering, Communications and Computing, Springer, vol. 22, no. 1, pp. 47-90, 2011.
- G. Lillacci, M. Boccadoro and P. Valigi, The p53 network and its control via MDM2 inhibitors: insights from a dynamical model, Proc. 45th IEEE Conference on Decision and Control, San Diego, California, USA, Dec. 2006.
- Ph. Martin and P. Rouchon, Systèmes plats: planification et suivi des trajectoires, Journées X-UPS, Ócole des Mines de Paris, Centre Automatique et Systèmes, Mai,1999.
- S. K. Peirce and H. W. Findley, Targetting the MDM2-p53 interaction as a therapeutic strategy for the treatment of cancer, Cell Health and cytoskeleton, Dove Medical Press, vol. 2, pp. 49-58, 2010.
- J. Qi, S. Shao, Y. Shen and X. Gu, Cellular responding DNA damage: a predictive model of P53 Gene Regulatory Networks under continuous ion radiation, Proc. 27th Chinese Control Conference, Kunming Yunnan, China, July 2008.
- J. Wagner, L. Ma, J.J. Rice, W. Hu, A.J. Levine and G.A. Stolovitzky, p53-mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback, IEE Proceedings on Systems Biology, vol. 152, no.3, pp. 109-118, 2005.
- G. G. Rigatos and S.G. Tzafestas, Extended Kalman Filtering for Fuzzy Modelling and Multi-Sensor Fusion, Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis, vol. 13, pp. 251-266, 2007.
- G. Rigatos and Q. Zhang, Fuzzy model validation using the local statistical approach, Fuzzy Sets and Systems, Elsevier, vol. 60, no.7, pp. 882-904, 2009.
- G. Rigatos, Modelling and control for intelligent industrial systems: Adaptive algorithms in robotics and industrial engineering, Springer, 2011.
- G. Rigatos, Advanced models of neural networks: Nonlinear dynamics and stochasticity in biological neurons, Springer, 2013.
- G. Rigatos and E. Rigatou, A Kalman Filtering approach to robust synchronization of coupled neural oscillators, ICNAAM 2013, 11th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, Sep, 2013.
- P. Rouchon, Flatness-based control of oscillators, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 85, no.6, pp. 411-421, 2005
- J. Rudolph, Flatness Based Control of Distributed Parameter Systems, Steuerungs- und Regelungstechnik, Shaker Verlag, Aachen, 2003.
- H. Sira-Ramirez and S. Agrawal, Differentially Flat Systems, Marcel Dekker, New York, 2004.
Paper Citation
in Harvard Style
G. Rigatos G. and G. Rigatou E. (2014). Control of the p53 Protein - mdm2 Inhibitor System using Nonlinear Kalman Filtering . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 209-214. DOI: 10.5220/0004866702090214
in Bibtex Style
@conference{bioinformatics14,
author={Gerasimos G. Rigatos and Efthymia G. Rigatou},
title={Control of the p53 Protein - mdm2 Inhibitor System using Nonlinear Kalman Filtering},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={209-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004866702090214},
isbn={978-989-758-012-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - Control of the p53 Protein - mdm2 Inhibitor System using Nonlinear Kalman Filtering
SN - 978-989-758-012-3
AU - G. Rigatos G.
AU - G. Rigatou E.
PY - 2014
SP - 209
EP - 214
DO - 10.5220/0004866702090214