This development contributes to the increasing
use of computer systems in almost all areas of
human activity. Thus, there is a rising demand for
dynamic, context-sensitive systems. The use of this
type of application in providing information to users
of urban public transport can provide greater
attraction and loyalty to the service.
This work has presented the RecRoute route
recommendation system for users of public
transportation by bus, able to process static and
dynamic contextual information, of the users, bus
lines, climate, time and traffic, providing more
fitting recommendation for the passengers.
This solution differs from other related work by
the use of dynamic contextual information from
various sources by using different devices to enable
ubiquitous and context sensitive use being directed
to public transportation passengers. RecRoute is
integrated to the Ubibus project and is one of its
applications.
Future works are related to the suggestions made
by participants of the experiment and more
experimentations, aiming the improvement of
RecRoute as follows: develop versions for other
operating systems of mobile devices, in addition to
Android, such as IOS and Windows; calibrate the
importance of contextual information used by the
application; and evaluate other algorithms that can
improve the recommendations provided.
REFERENCES
Adomavicius, G., Tuzhilin, A., 2008. Context-Aware
Recommender Systems. In Conference on
Recommender Systems, pp. 335-336.
Baltrunas, L., 2008. Exploiting Contextual Information in
Recommender Systems. In ACM Conference on
Recommender Systems, pp. 295-298.
Baltrunas, L., 2011. Context-Aware Collaborative
Filtering Recommender Systems. 172 f. Tese (Phd.
Thesis in Computer Science). University of Bolzano.
Bolzano, Italy.
Bastos, R., Jaques, P., 2010. Antares: Um sistema web de
consulta de rotas de ônibus como serviço público.
Revista Brasileira de Computação Aplicada, vol. 2,
pp. 41-56.
Bertolotto, M., O’Hare, G., Strahan, R., Brophy, A.,
Martin, A., McLoughlin, E., 2002. Bus catcher: a
context sensitive prototype system for public
transportation users. In 2th International Workshop on
Web and Wireless Geographical Information Systems
(W2GIS), Singapore, pp. 64-72.
Brézillon, P., 1999. Context in Artificial Intelligence: IA
Survey of the Literature. Computer & Artificial
Intelligence 18, pp. 321-340.
Chorianopoulos, K., 2008. Personalized and mobile digital
TV applications. Multimedia Tools and Applications.
In Kluwer Academic Publishers, v.35, n.2, pp. 1-10.
Cutolo, F., 2003. Diretrizes para sistema de informação ao
usuário. In 3th Seminário Internacional PROMOTEO,
Porto Alegre, RS, Brazil.
Ferris, B., Watkins, K., Borning, A., 2009. Onebusaway:
A Transit Traveller Information System. In Mobicase.
San Diego, USA, pp. 92-106.
Friedman, D., 1997. Machine Learning 29, pp. 131-163.
Gómez, A., Diaz, G., Bousetta, K., 2009. ITS Forecast:
GIS Integration with Active Sensory System. In
Information Infrastructure Symposium, pp. 1-6.
Hoar, R., 2010. A personalized web based public transit
information system with user feedback. In 13th
International IEEE Conference on Intelligent
Transportation Systems (ITSC), Ilha da Madeira,
Portugal, pp. 1807-1812.
Lima, V., Magalhães, F., Tito, A. O., Santos, R., Ristar,
A., Santos, L., Vieira, V., Salgado, A. C, 2012.
UbibusRoute : Um Sistema de Identificação e
Sugestão de Rotas de Ônibus Baseado em Informações
de Redes Sociais. In 8th Simpósio Brasileiro de
Sistemas de Informação, São Paulo, Brazil. pp. 516-
527.
Mcculloch, W. S., Pitts, W., 1943. A Logical Calculus of
the Ideas Immanent in Nervous Activity. Bulletin of
Mathematical Biophysics, n.5, p.115-133.
Pilon, J. A., 2009. Sistema de Informação ao Usuário do
Transporte Coletivo por Ônibus na Cidade de Vitória-
ES, Universidade Tecnológica Federal do Paraná –
Ponta Grossa-PR, Brazil.
Quinlan, R., 1993. C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, San Mateo, USA.
Sussman, J., 2005. Perspectives on Intelligent
Transportation Systems. New York, USA: Springer.
Tumas, G., Ricci, F., 2009. Personalized mobile city
transport advisory system. In Information and
Communication Technologies in Tourism, Amsterdam,
Nestherlands, pp. 173-183.
Vieira, V., Tedesco, P., Salgado, A. C., 2009. Modelos e
Processos para o Desenvolvimento de Sistemas
Sensíveis ao Contexto. Jornadas de Atualização em
Informática. Porto Alegre, RS, Brazil, pp. 381-431.
Vieira, V., Caldas, L., Salgado, A. C., 2011. Towards an
Ubiquitous and Context Sensitive Public
Transportation System. In 4th International
Conference on Ubi-media Computing, São Paulo, SP,
Brazil, pp 174-179.
Waikato, 2010. Weka 3 – Machine Learning Software in
Java. URL: http://www.cs.waikato.ac.nz/ml/weka.
Zhang, J., Wang, F., Wang, K., Lin, W., Xu, X., Chen, C.,
2011. Data-Driven Intelligent Transportation Systems:
A Survey. IEEE Transactions on Intelligent
Transportation Systems, pp. 1624-1639.
ICEIS2014-16thInternationalConferenceonEnterpriseInformationSystems
366