REFERENCES
Bailey, D.., Johnston, C.., 2007. Single Pass Connected
Components Analysis.
Bailey, D.G., 2011. Design for embedded image
processing on FPGAs. John Wiley & Sons (Asia),
Singapore.
BS_Rev [WWW Document], n.d. URL https://
sites.google.com/site/thierry- bouwmans/background-
subtraction
Calvo-Gallego, E., 2011. Implementación sobre FPGAs de
algoritmos de procesamiento de imágenes para
etiquetado de componentes conectados (Trabajo Fin de
Máster Máster en Microelectrónica: Diseño y
Aplicaciones de Sistemas Micro/Nanométricos).
Sevilla.
Calvo-Gallego, E, Aldaya-Cabrera, A., Brox, P, Sánchez-
Solano, S, 2012a. Real-time FPGA Connected
Component Labeling System. Presented at the 19th
IEEE International Conference on Electronics,
Circuits and Systems (ICECS),.
Calvo-Gallego, E., Brox, P., Sanchez-Solano, S., 2012. Un
algoritmo en tiempo real para etiquetado de
componentes conectados en imágenes, in: Proceedings
of the XVIII International IBERCHIP Workshop.
Calvo-Gallego, E, Brox, P, Sanchez-Solano, S, 2013b. A
Fuzzy System for Background Modeling in Video
Sequences. Springer, Lecture Notes in Artificial
Intelligence (LNAI) 184–192.
Chen Wu, Aghajan, H., 2008. Real-Time Human Pose
Estimation: A Case Study in Algorithm Design for
Smart Camera Networks. Proc. IEEE 96, 1715–1732.
Cho, J.U., Jin, S.H., Dai Pham, X., Jeon, J.W., Byun, J.E.,
Kang, H., 2006. A real-time object tracking system
using a particle filter, in: Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference
On. pp. 2822–2827.
Everts, I., Sebe, N., Jones, G.A., 2007. Cooperative Object
Tracking with Multiple PTZ Cameras. Presented at the
14th International Conference on Image Analysis and
Processing, 2007. ICIAP 2007, pp. 323–330.
Fan Yang, Paindavoine, M., 2003. Implementation of an
rbf neural network on embedded systems: real-time
face tracking and identity verification. IEEE Trans.
Neural Networks 14, 1162–1175.
Garcés-Socarrás, L.., Sánchez-Solano, S., Brox, P.,
Cabreara Sarmiento, A.., 2013. Library for model-
based design of image processing algorithms on
FPGAs. Rev. Fac. Ing. Univ. Antioquia, n
o
68 3–5.
Lazaros, N., Sirakoulis, G. C., Gasteratos, A., 2008.
Review of Stereo Vision Algorithms: From Software
to Hardware. Int. J. Optomechatronics 2, 435–462.
Lobaton, E., Vasudevan, R., Bajcsy, R., Sastry, S., 2010.
A Distributed Topological Camera Network
Representation for Tracking Applications. IEEE
Trans. Image Process. 19, 2516 –2529.
Microelectronics doctorate program [WWW Document],
URL http://www.phdmicroelectronica.us.es/eng/?pag=
general_description
Microelectronics Master [WWW Document], URL
http://www.mastermicroelectronica.us.es/)
Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips,
W., 2007. Soft Computing in Image Processing,
Studies in Fuzziness and Soft Computing,. Springer
Verlag.
Sankaranarayanan, A.C., Veeraraghavan, A., Chellappa,
R., 2008. Object Detection, Tracking and Recognition
for Multiple Smart Cameras. Proc. IEEE 96, 1606–
1624.
Schaeferling, M., Kiefer, G., 2010. Flex-SURF: A flexible
architecture for FPGA-based robust feature extraction
for optical tracking systems, in: Reconfigurable
Computing and FPGAs (ReConFig), 2010
International Conference On. pp. 458–463.
Stillman, S., Tanawongsuwan, R., Essa, I., 1999. Tracking
multiple people with multiple cameras, in:
International Conference on Audio-and Video-based
Biometric Person Authentication.
Svab, J., Krajník, T., Faigl, J., Preucil, L., 2009. Fpga
based speeded up robust features, in: Technologies for
Practical Robot Applications, 2009. TePRA 2009.
IEEE International Conference On. pp. 35–41.
Wnuk, M., 2008. Remarks on Hardware Implementation
of Image Processing Algorithms. Int. J. Appl. Math.
Comput. Sci. 18.
Yilmaz, A., Javed, O., 2006. Object Tracking: A Survey.
ACM Comput. Surv. 38.
Zhao, J., Cheung, S.-C., Nguyen, T., 2008. Optimal
Camera Network Configurations for Visual Tagging.
IEEE J. Sel. Top. Signal Process. 2, 464 –479.
HardwareImplementationofSmartEmbeddedVisionSystems
51