4 CONCLUSIONS
Many digital library implementations and applica-
tions demand additional and advanced services to ef-
fectively specify, reuse, describe and aggregate differ-
ent resources. Examples of commonly required ser-
vices include those related to the support of images
and related CBIR tasks.
In this paper, we address the integration of im-
age retrieval with XFusion, a rule-based cleaning tool
that stores curated data in an integrated repository. A
metamodel is proposed in order to specify the com-
ponents of the CBIR related tasks, validated through
a case study within the parasite domain. The main
novelty resides in automatically solving conflicts in
CBIR without user intervention, using rules to inte-
grate images and associated metadata.
A straightforward future work consists in the use
of rules to guide the design and implementation of im-
age digital libraries that integrate different (and possi-
bly distributed) image collections. One starting point
relies on the use of applications, like those proposed
in (Gonc¸alves and Fox, 2002; Zhu et al., 2003).
ACKNOWLEDGEMENTS
We would like to thank CAPES, CNPq, FAPESP,
AMD, Microsoft Research, and Fundac¸
˜
ao Arauc
´
aria.
REFERENCES
Achananuparp, P., McCain, K. W., and Allen, R. B. (2007).
Supporting student collaboration for image index-
ing. In ICADL’07, pages 24–34, Berlin, Heidelberg.
Springer-Verlag.
Akbar, S., Kung, J., and Wagner, R. (2008). Multishape-
features and text-feature integration on 3d model simi-
larity retrieval. Int. J. Innov. Comput. Appl., 1(3):171–
184.
Awre, C. (2009). Managing compound objects
within Fedora, Enhanced E-theses Project
Deliverable 9, available at http://igitur-
archive.library.uu.nl/DARLIN/2010-0526-
200241/UUindex.html. Knowledge Exchange
Group.
Bhattacharya, I. and Getoor, L. (2006). Collective entity
resolution in relational data. IEEE Data Engineering
Bulletin, 29(2):4–12.
Bilke, A., Bleiholder, J., Naumann, F., B
¨
ohm, C., and
Weis, M. (2005). Automatic data fusion with hum-
mer. In Proc. of the 31st VLDB Conference, pages
1251–1254.
Bleiholder, J. and Naumann, F. (2008). Data fusion. ACM
Comput. Surv., 41(1):1:1–1:41.
Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan,
W.-C. (2002). Keys for XML. Computer Networks,
39(5):473–487.
Burnett, I. S., Pereira, F., de Walle, R. V., and Koenen, R.
(2006). The MPEG-21 Book. John Wiley & Sons.
Cao, Y., Fan, W., and Yu, W. (2013). Determining the rel-
ative accuracy of attributes. In SIGMOD’13: Proc. of
the ACM SIGMOD International Conference on Man-
agement of Data, pages 565–576.
Carkacioglu, A. and Yarman-vural, F. (2001). Sasi: A new
texture descriptor for content based image retrieval.
IEEE International Conference on Image Processing,
2:137–140.
Cecchin, F., Ciferri, C. D. A., and Hara, C. (2010).
XML Data Fusion. In International Conference
on Data Warehousing and Knowledge Discovery
(DaWaK‘2010).
Dong, X., Berti-Equille, L., Hu, Y., and Srivastava, D.
(2010). SOLOMON: Seeking the truth via copying
detection. PVLDB, 3(2):1617–1620.
Fan, W., Geerts, F., Tang, N., and Yu, W. (2013). Inferring
data currency and consistency for conflict resolution.
In ICDE’13: Proceedings of the IEEE International
Conference on Data Engineering, pages 470–481.
Fox, E. A. and France, R. K. (1997). Architecture of an
expert system for composite document analysis, rep-
resentation, and retrieval. In Readings in Information
Retrieval, pages 400–412. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.
Gonc¸alves, M. A. and Fox, E. A. (2002). 5SL: A Language
for Declarative Specification and Generation of Digi-
tal Libraries. In JCDL ’02, pages 263–272, New York,
NY, USA. ACM.
Ikeda, R. and Widom, J. (2010). Panda: A system for
provenance and data. IEEE Data Engineering Bul-
letin, 33(3):42–49.
Ives, Z. G., Green, T. J., Karvounarakis, G., Taylor, N. E.,
Tannen, V., Talukdar, P. P., Jacob, M., and Pereira,
F. (2008). The Orchestra collaborative data sharing
system. SIGMOD Record, 37(3):26–32.
Jochum, W., Kaiser, M., Schellner, K., and Wirl, F. (2007).
Living memory annotation tool — image annotations
for digital libraries. In Proc. of the 11th European
conference on Research and Advanced Technology for
Digital Libraries, ECDL ’07, pages 549–550, Berlin,
Heidelberg. Springer-Verlag.
Karpovich, J. F., Grimshaw, A. S., and French, J. C. (1994).
Extensible file system (elfs): an object-oriented ap-
proach to high performance file i/o. ACM SIGPLAN
Notices, 29(10):191–204.
Kozievitch, N. P., Almeida, J., da S. Torres, R., Santanch
`
e,
A., Leite, N. J., Murthy, U., and Fox, E. A. (2012).
Reusing a compound-based infrastructure for search-
ing and annotating video stories. International Jour-
nal of Multimedia Technology, 2:89–97.
Kozievitch, N. P., Almeida, J., Torres, R. S., Leite, N. A.,
Gonc¸alves, M. A., Murthy, U., and Fox, E. A. (2011a).
Towards a Formal Theory for Complex Objects and
Content-Based Image Retrieval. JIDM, 2(3):321–336.
Kozievitch, N. P., da S. Torres, R., Santanch
`
e, A., Pe-
dronette, D. C. G., Calumby, R. T., and Fox, E. A.
ExploringDataFusionundertheImageRetrievalDomain
177