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Abstract: In this paper we present a method for body motion analysis in dance using multiple Kinect sensors. The 
proposed method applies fusion to combine the skeletal tracking data of multiple sensors in order to solve 
occlusion and self-occlusion tracking problems and increase the robustness of skeletal tracking. The fused 
skeletal data is split into five different body parts (torso, left hand, right hand, left leg and right leg), which 
are then transformed to allow view invariant posture recognition. For each part, a posture vocabulary is 
generated by performing k-means clustering on a large set of unlabeled postures. Finally, body part postures 
are combined into body posture sequences and Hidden Conditional Random Fields (HCRF) classifier is 
used to recognize motion patterns (e.g. dance figures). For the evaluation of the proposed method, Tsamiko 
dancers are captured using multiple Kinect sensors and experimental results are presented to demonstrate 
the high recognition accuracy of the proposed method. 

1 INTRODUCTION 

Dance is an immaterial art as it relies on the motion 
of the performer’s body. Dance can convey different 
messages according to the context, and focus on 
aesthetics or artistic aspects (contemporary dance, 
ballet dance), the cultural and social aspects (folk 
dances, traditional dances), story telling (symbolic 
dances), spiritual meanings (whirling dervishes), etc. 
Especially traditional dances are strongly linked to 
local identity and culture. The know-how of these 
dances survives at the local level through small 
groups of people who gather to learn, practice and 
preserve these traditional dances. Therefore, there is 
always a risk that certain elements of this form of 
intangible cultural heritage could die out or 
disappear if they are not safeguarded and transmitted 
to the next generation. 

ICT technologies can play an important role 
towards this direction. Specifically, the development 
of a system for the capturing, analysis and modelling 
of rare dance interactions could significantly 
contribute to this transfer of knowledge. However, 
the main challenge of this task lies in the accurate 
recognition of human body movements. Today, the 
major advantages over earlier systems include the 
ability to make more precise measurements with a 
wider array of sensing strategies, the increased 

availability of processing power to accomplish more 
sophisticated interpretations of data, and a greatly 
enhanced flexibility in the area of media rendering 
(Aylward, 2006). 

Depending on the degree of precision of the 
captured motion and the constraints posed, different 
sensing technologies are used. They can be broadly 
divided into three main categories: optical motion 
capture, inertial motion capture and markerless 
motion capture. Optical motion capture is the most 
accurate technique but it is also expensive and 
constraining. Inertial motion capture is less accurate 
and less stable. Finally, markerless motion capture 
based on real-time depth sensing systems, such as 
Microsoft Kinect, is relatively cheap and offer a 
balance in usability and cost compared to optical and 
inertial motion capture systems. To this end, this 
approach is considered as the most promising one 
and has attracted particular attention recently 
(Alexiadis et al., 2011). 

Existing approaches to human action and gesture 
recognition using markerless motion capture 
technologies can be coarsely grouped into two 
classes. The first uses 3D depth maps / silhouettes 
which form a continuous evolution of body pose in 
time. Action descriptors, which capture both spatial 
and temporal characteristics, are extracted from 
those sequences and conventional classifiers can be 
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used for recognition. The other category of the 
methods extracts features from each silhouette and 
model the dynamics of the action explicitly. Bag of 
Words (BoW) are often employed as an intermediate 
representation with subsequent use of statistical 
models such as hidden Markov models (HMM), 
graphical models (GM) and conditional random 
fields (CRF) (Li et al., 2010); (Wang et al., 2012) 

Another more recent approach is to use the 
skeletal data acquired from the depth maps (Shotton 
et al., 2011). The subsequent use of skeletal data for 
action detection can be divided into two categories. 
The methods of the first category are based on 3D 
joints feature trajectories (Waithayanon and 
Aporntewan, 2011). Those features are either joint 
position, rotation data, or some transformation of the 
above. They are mainly based on various Dynamic 
Time Warping (DTW) variants, like multi-
dimensional time warping (MD-DTW) (ten Holt et 
al., 2007). The recognition is based on the alignment 
of the movement trajectories compared to the 
‘oracle’ move which is being detected. Another 
approach is to extract features from the whole 
skeleton (histograms) and to use statistical models as 
in the case of silhouette based methods (Xia et al., 
2012). 

In this paper, we present a method for dance 
capture, analysis and recognition using a multi-depth 
sensors set-up and a skeleton fusion technique to 
address occlusion problems and increase the 
robustness of the skeletal tracking. Subsequently, we 
propose the splitting of the skeleton into five 
different parts, and the automatic generation of a 
posture vocabulary (codebook) for each part. 
Finally, a Hidden State Conditional Random Field 
(HCRF) (Quattoni et al., 2004); (Wang et al., 2006) 
is applied for the recognition of the dance figures 
(motion patterns). Experimental results with real 
Tsamiko dancer (Tsamiko is a traditional Greek 
dance) have shown the great potential of the 
proposed method. 

2 SYSTEM OVERVIEW 

The flowchart of the data acquisition and motion 
recognition process is presented in Figure 1. Several 
Kinect sensors placed around the subject are used to 
acquire skeletal animation data. Microsoft Kinect 
SDK (Kinect for Windows, 2013), has been used as 
a solution for skeletal tracking and acquisition. It 
provides 3D position and rotation data (relative to a 
reference coordinate system centred at the origin of 
the sensor) of 20 predefined skeletal joints of a 

human body. In addition a confidence level of the 
joint tracking (low/medium/high) is provided per 
joint. A skeletal fusion is proposed to combine the 
data coming from multiple sensors onto a single 
fused skeleton, which is then provided to the Motion 
Analysis Module. Specifically, the skeleton is split 
into five body parts (torso, left/right hand, left/right 
foot), which are then transformed to allow view 
invariant posture recognition. The next step is to 
recognize each body part posture appearing in a 
frame, based on a predefined vocabulary of postures, 
obtained from a set of training sequences. Finally, 
body part postures are combined into body posture 
sequences and an HCRF is used to recognize a 
motion pattern (e.g. a dance move) from a 
predefined set of motion patterns from which the 
HCRF was previously trained.  
 

 

Figure 1: System overview. 

2.1 Calibration 

In order to improve the robustness of skeleton 
tracking provided by the Microsoft Kinect SDK, to 
reduce occlusion and self-occlusion problems and to 
increase the area of coverage, multiple Kinect 
devices were used. Prior to fusion, skeletal data from 
all sensors have to be transformed to a common 
reference coordinate system. One sensor is selected 
as the reference sensor providing the reference 
frame. A calibration procedure is then required to 
estimate the transformations between the coordinate 
systems of each sensor and the reference sensor. The 
proposed calibration procedure does not require any 
checker boards or similar patterns. Instead, the only 
requirement is that a person needs to be visible from 
multiple sensors, whose FOV’s need to partially 
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overlap. The skeleton joint positions are then fed 
into the Iterative Closest Point algorithm (Besl and 
McKay, 1992) to estimate the rigid transformation 
(Rotation-Translation) that minimizes the distance 
between the transformed positions in the reference 
frame. This transformation is then used to register 
the skeletons acquired from each sensor in the 
reference coordinate system. The implementation of 
ICP algorithm found in the Point Cloud Library 
(PCL, http://pointclouds.org/), (Rusu, 2011) was 
used. 

Since the skeleton frame data are sparse, each 
containing at most 20 points, and the estimation of 
the joint positions can be erroneous, the calibration 
procedure is iterated until two convergence criteria 
are both met. The first criterion is that the number of 
joints tracked with high confidence on both devices 
needs to be higher that a threshold Tjoints. The higher 
this number is the better the expected accuracy of 
the calibration. The second criterion is that the 
fitness score of the ICP algorithm needs to be lower 
than a threshold TICP. These thresholds can be 
adjusted to accommodate various setups and 
recording conditions.  

2.2 Skeleton Fusion 

Once all sensors are calibrated, skeleton registration 
is performed, i.e. the representation of each skeleton 
is transformed to the reference coordinate system. 
This is accomplished by multiplying the skeleton 
joint positions obtained from each sensor by the 
corresponding RT matrix, estimated in the 
calibration process. Then, a skeletal fusion 
procedure is used to combine these registered 
skeletons into a single skeleton representation 
(Figure 2). 

Specifically, the following fusion strategy has 
been used on joint positional data, but could easily 
be extended on joint rotations as well. Initially, the 
sum of all joint confidence levels of each skeleton is 
computed and the skeleton with the highest total is 
selected. Since this is the skeleton with the most 
successfully tracked joints, it is expected to be the 
most accurate representation of the real person pose.  

We use this skeleton as a base, and enrich it with 
data provided from the remaining skeletons. 
Specifically, the confidence of each joint of the base 
skeleton is examined. If the confidence is medium or 
low, the joint position is corrected by taking into 
account the position of this joint in the remaining 
skeletons. If corresponding joints with high 
confidence are found in any of the remaining 
skeletons, their average position is used to replace 

the position value of the joint. Otherwise, the same 
procedure is applied for joints containing medium 
confidence values. Finally, if only low confidence 
values exist, the same procedure is applied using the 
available skeleton data for the joint. 

 

 

Figure 2: Colour maps, depth maps and skeleton frames 
from 3 Kinect sensors and a fused skeleton result. 

As a last step, a stabilization filtering step is 
applied in order to overcome problems due to rapid 
changes in joint position from frame to frame which 
may occur because of the use of joint position 
averaging in our fusion strategy. We use a time 
window of three frames, to keep the last three high-
confidence positions for each joint. The centroid of 
these three previous positions is calculated and 
updated for each frame. If the Euclidean distance 
between a joint position and this centroid is higher 
than a certain threshold, then we replace the joint 
position with the value of the centroid, so as to avoid 
rapid changes in joint positions. We have used 
different thresholds for each joint since hands and 
feet are expected to move more rapidly. 

3 MOTION ANALYSIS 

The motion analysis subsystem (Figure 3) can use as 
input a skeleton animation stream, either provided 
from a single Kinect device, or from multiple Kinect 
devices, after using the skeleton fusion procedure 
described in Section 2.2. 

Initially, to achieve view invariance of motion 
recognition, the skeleton joint positions are 
translated relative to the root of the skeleton (Hip 
Center) and rotated around the y axis so that the 
skeleton is facing towards the y axis. Next, the 
skeleton is divided into five parts, shown in Figure 4 
(torso, left hand, right hand, left foot, right foot). 
Each part has a root joint and children joints. For 
each skeleton part we generate a feature vector 
consisting of positions of each joint relative to the 
root of the part (also shown in Figure 4).  
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Figure 3: Motion analysis subsystem. 

Specifically, the root of the torso part is the Hip 
Center and the children joints are: Spine, Shoulder 
Center and Head. The root of the left hand part is 
the Shoulder Center and the children are: Left 
Shoulder, Left Elbow, Left Wrist and Left Hand. The 
root of the left foot part is the Hip Center and the 
children are: Left Hip, Left Knee, Left Ankle and Left 
Foot. The right hand and right foot parts consist of 
the symmetrical joints of their left counterparts. 

3.1 Posture Codebook 

For each of the 5 skeleton parts described above, we 
construct a codebook of basic postures of a 
predefined size k. The identification of these basic 
postures is performed automatically by using k-
means clustering of a large set of postures obtained 
from one or more recorded training sequences. 
Clustering essentially divides the ‘posture space’ 
into k discrete posture subspaces. After building a 
posture codebook for each body part, we train a 
multiclass SVM classifier to classify each incoming 
feature vector as a specific posture from this posture 
codebook. Thus we obtain five posture classifiers, 
one per body part. 

 

 

Figure 4: Skeleton parts. 

3.2 Motion Pattern Recognition using a 
HCRF Model 

For the motion detection step, we have selected the 
Hidden-state Conditional Random Fields (HCRF) 
classifier (Quattoni et al., 2004). A set of M basic 
motion patterns, i.e. sequences of frames of skeleton 
data describing a specific movement, is first 
identified. We then train an HCRF multi-class model 
for each of these basic motion patterns. Specifically, 
for the training phase, we use labelled sequences of 
the basic motion patterns. Each sequence consists of 
a sequence of labelled skeleton part posture vectors, 
i.e. vectors of five elements, each being the index of 
a basic posture from the codebook corresponding to 
the specific skeleton part. For the testing phase, a 
similar vector is initially estimated for each frame of 
the input skeleton data sequence and is then used as 
input to the HCRF classifier. Then, the identification 
of each motion pattern is based on the 
probability/likelihood of the model of the HCRF for 
each observation sequence. For the implementation 
of HCRF, the Hidden-state Conditional Random 
Fields Library v2 was used 
(http://sourceforge.net/projects/hcrf/). 

4 EXPERIMENTAL RESULTS 

To evaluate our methodology, a data recording 
session took place, in which several dancers were 
recorded performing the Tsamiko dance (Figure 5). 

Tsamiko is a popular traditional folk dance of 
Greece, done to music of ¾ meter. It is a masculine 
(mostly) circular dance with more smoothly steps 
danced by women. It is danced in an open circle 
where the first dancer performs variations while the 
others follow the basic steps. Tsamiko is danced in 
various areas of Greece such as: Peloponnese, 
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Central Greece, Thessaly, W. Macedonia, with 
variations in kinesiological structure (10, 12, 8, 16 
steps). The dance follows a strict and slow tempo 
with emphasis on the "attitude, style and grace" of 
the dancer. The steps are relatively easy but have to 
be precise and strictly on beat. Its variations consist 
of both smooth and leaping steps, which give the 
dance a triumphant air. The handle is hand elbows in 
position W. The dance is accompanied by various 
songs. 
 

 

Figure 5: Recording session. 

 

 

 

Figure 6: Tsamiko dance steps. 

For the evaluation of our methodology we 
recorded three male dancers, dancing the single step 

version of the Tsamiko dance (Figure 6). The main 
dance pattern in Tsamiko can be split in 3 basic 
dance moves, which were used as the basic motion 
patterns that we tried to detect. The recordings were 
manually annotated to mark the beginning and end 
of each move. Each dancer was recorded separately 
and was required to perform the basic moves of the 
dance several times. 

4.1 Sensors Setup 

For the final recording we used three Kinect sensors 
placed in front of the dancer in an arc topology (one 
in front and two at the sides), as seen in Figure 7(b). 
One additional setup was tested, but was rejected for 
the final recording. We tried placing four Kinect 
sensors all around the dancer, at 90 degree angle 
between them, as seen in Figure 7(a). This setup 
allowed for approximately 2x2m active space for the 
dancer to move. The interference due to infrared 
emission from the sensors was minimal, but only the 
two frontal sensors provided useful skeletal data, 
since skeletal tracking of Microsoft SDK is designed 
to work on people facing towards the sensor. Since 
the dancers were moving on a small arc, they were 
always facing in the same direction. Thus, our final 
setup proved to be more effective since we had 
skeletal tracking data from three sensors. In addition, 
having a smaller angle between adjacent sensor 
FOVs allowed for increased precision of calibration. 
Adding more sensors proved to be problematic since 
interference caused by the emission of infrared 
pattern by each sensor increased significantly, which 
had a negative impact on skeletal tracking. 

 

 

Figure 7: Sensor setups (a) Setup A (b) Setup B (final 
setup). 

4.2 Evaluation Results 

The recorded data consisted of eight repetitions of 
basic Tsamiko dance pattern (three dance moves per 
repetition) executed by each of the three dancers. 
We split the recorded data into train and test sets by 
using half repetitions of the basic dance pattern of 
each dancer (12 repetitions per move) for training 
and the remaining for testing. Initially the posture 
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codebook was created with a codebook of k=20 
basic postures for each body part using the training 
motion sequences. Then, we trained an HCRF using 
the train sequences to be able to distinguish between 
the three basic Tsamiko dance moves. CRFs with a 
varying number of hidden states were trained as can 
be seen from Table 1, in which the dance move 
detection accuracies of the test set are presented, per 
dancer and overall. The best overall detection 
accuracy that was achieved is 93,9% using an HCRF 
with 11 hidden states. In Table 2, detection 
accuracies are presented for each dance move.  

Table 1: Recognition accuracies of Tsamiko dance moves 
per person and overall recognition accuracies for varying 
number of hidden states in the HCRF classifier. 

Hidden 
States 

5 8 11 12 15 20 

Dancer A 38,4 61,5 84,6 76,9 76,9 69,2 

Dancer B 90,9 90,9 100 100 90,9 72,7 
Dancer C 66,6 88,8 100 100 100 77,7 
Overall 63,6 78,7 93,9 90,9 87,8 72,7 

Table 2: Recognition accuracies of Tsamiko dance moves 
for varying number of hidden states in the HCRF 
classifier. 

Hidden 
States 

5 8 11 12 15 20 

Dance 
move 1 

83,3 66,6 91,6 100 83,8 100 

Dance 
move 2 

27,2 81,8 90,9 81,8 90,9 36,3 

Dance 
move 3 

80 90 100 90 90 80 

Overall 63,6 78,7 93,9 90,9 87,8 72,7 

5 CONCLUSIONS AND FUTURE 
WORK 

This paper presents a study on recognizing 
predefined dance motion patterns from skeletal 
animation data captured by multiple Kinect sensors. 
As can be seen from the experimental results, our 
method gave quite promising results providing high 
recognition accuracies of the three Tsamiko dance 
moves. In future work we aim to experiment on 
recognition of different styles of these dance moves 
and adding more complex dance patterns and 
variations. In addition we plan to extend our 
skeleton fusion algorithm on joint rotation data (both 
absolute and hierarchical) which will allow the 
construction of posture codebooks based on both 
position and rotation data. 
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