Semantic Labelling of 3D Point Clouds using Spatial Object Constraints

Malgorzata Goldhoorn, Ronny Hartanto

2014

Abstract

The capability of dealing with knowledge from the real human environment is required for autonomous systems to perform complex tasks. The robot must be able to extract the objects from the sensors’ data and give them a meaningful semantic description. In this paper a novel method for semantic labelling is presented. The method is based on the idea of connecting spatial information about the objects to their spatial relations to other entities. In this approach, probabilistic methods are used to deal with incomplete knowledge, caused by noisy sensors and occlusions. The process is divided into two stages. First, the spatial attributes of the objects are extracted and used for the object pre-classification. Second, the spatial constraints are taken into account for the semantic labelling process. Finally, we show that the use of spatial object constraints improves the recognition results.

References

  1. Anand, A., Koppula, H. S., Joachims, T., and Saxena, A. (2012). Contextually guided semantic labeling and search for three-dimensional point clouds. The International Journal of Robotics Research.
  2. Aydemir, A., Sjöö, K., and Jensfelt, P. (2010). Object search on a mobile robot using relational spatial information. Proc. Int. Conf. on Intelligent Autonomous Systems, pages 111-120.
  3. Bartsch, S., Birnschein, T., Cordes, F., Kuehn, D., Kampmann, P., Hilljegerdes, J., Planthaber, S., Roemmermann, M., and Kirchner, F. (2010). Spaceclimber: Development of a six-legged climbing robot for space exploration. In Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), pages 1-8.
  4. Eich, M., Dabrowska, M., and Kirchner, F. (2010). Semantic labeling: Classification of 3d entities based on spatial feature descriptors. In IEEE International Conference on Robotics and Automation, ICRA.
  5. Eich, M., Grimminger, F., and Kirchner, F. (2008). A versatile stair-climbing robot for search and rescue applications. In Safety, Security and Rescue Robotics, 2008. SSRR 2008. IEEE International Workshop on, pages 35-40.
  6. Galindo, C., Fernández-Madrigal, J.-A., González, J., and Saffiotti, A. (2008). Robot task planning using semantic maps. Robot. Auton. Syst., 56(11):955-966.
  7. Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernández-Madrigal, J., and González, J. (2005). Multi-hierarchical semantic maps for mobile robotics. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages 3492-3497, Edmonton, CA. Online at http://www.aass.oru.se/ asaffio/.
  8. Günther, M., Wiemann, T., Albrecht, S., and Hertzberg, J. (2011). Model-based object recognition from 3d laser data. In Proceedings of the 34th Annual German conference on Advances in artificial intelligence, KI'11, pages 99-110, Berlin, Heidelberg. Springer-Verlag.
  9. Nüchter, A. and Hertzberg, J. (2008). Towards semantic maps for mobile robots. Robotics and Autonomous Systems, 56(11):915-926.
  10. Nüchter, A., Surmann, H., Lingemann, K., and Hertzberg, J. (2003). Semantic scene analysis of scanned 3d indoor environments. In VMV, pages 215-221.
  11. Pangercic, D., Tenorth, M., Jain, D., and Beetz, M. (2010). Combining perception and knowledge processing for everyday manipulation. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1065-1071.
  12. Rusu, R., Marton, Z., Blodow, N., Holzbach, A., and Beetz, M. (2009). Model-based and learned semantic object labeling in 3d point cloud maps of kitchen environments. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 3601-3608.
  13. Spenneberg, D. and Kirchner, F. (2007). The bio-inspired scorpion robot: design, control & lessons learned. Climbing & Walking Robots, Towards New Applications, pages 197-218.
  14. Vaskevicius, N., Birk, A., Pathak, K., and Poppinga, J. (2007). Fast Detection of Polygons in 3D Point Clouds from Noise-Prone Range Sensors. In IEEE International Workshop on Safety, Security and Rescue Robotics, 2007. SSRR 2007, pages 1-6. IEEE Press.
Download


Paper Citation


in Harvard Style

Goldhoorn M. and Hartanto R. (2014). Semantic Labelling of 3D Point Clouds using Spatial Object Constraints . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: WARV, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 513-518. DOI: 10.5220/0004874205130518


in Bibtex Style

@conference{warv14,
author={Malgorzata Goldhoorn and Ronny Hartanto},
title={Semantic Labelling of 3D Point Clouds using Spatial Object Constraints},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: WARV, (VISIGRAPP 2014)},
year={2014},
pages={513-518},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004874205130518},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: WARV, (VISIGRAPP 2014)
TI - Semantic Labelling of 3D Point Clouds using Spatial Object Constraints
SN - 978-989-758-002-4
AU - Goldhoorn M.
AU - Hartanto R.
PY - 2014
SP - 513
EP - 518
DO - 10.5220/0004874205130518