
Staged Model-Driven Generators
Shifting Responsibility for Code Emission to Embedded Metaprograms

Yannis Lilis1, Anthony Savidis1, 2 and Yannis Valsamakis1
1Institute of Computer Science, FORTH, Heraklion, Crete, Greece

2Department of Computer Science, University of Crete, Crete, Greece

Keywords: Model-Driven Engineering, Multistage Languages, Code Generation, Compile-Time Metaprogramming.

Abstract: We focus on MDE tools generating source code, entire or partial, providing a basis for programmers to
introduce custom system refinements and extensions. The latter may introduce two maintenance issues once
code is freely edited: (i) if source tags are affected model reconstruction is broken; and (ii) code inserted
without special tags is overwritten on regeneration. Additionally, little progress has been made in combining
sources whose code originates from multiple generative tools. To address these issues we propose an
alternative path. Instead of generating code MDE tools generate source fragments as abstract syntax trees
(ASTs). Then, programmers deploy metaprogramming to manipulate, combine and insert code on-demand
from ASTs with calls resembling macro invocations. The latter shifts responsibility for source code
emission from MDE tools to embedded metaprograms and enables programmers control where the
produced code is inserted and integrated. Moreover, it supports source regeneration and model
reconstruction causing no maintenance issues since MDE tools produce non-editable ASTs. We validate our
proposition with case studies involving a user-interface builder and a general purpose modeling tool.

1 INTRODUCTION

In general, Model-Driven Engineering (MDE)
involves tools, models, processes, methods and
algorithms addressing the demanding problem of
design-first system engineering. An important
authoring requirement for such tools is to involve
notions and concerns inherent in the design domain.
In this context, either general-purpose notations are
adopted in software modeling, or mission-specific
models are offered for very specific tasks. Then,
target implementations are incrementally derived,
usually with various intermediate transitions from
the modeling to the implementation domain, until
eventually reaching a source code representation.

The latter relates to generative MDE tools that
deploy code generators to automatically produce
source code for the various modeled entities. The
generated code may contain special tags carrying
model information in order to allow model
reconstruction, while it is typically extended with
custom user code to deliver the final application.
The primary tool-chain of generative MDE
frameworks is outlined under Figure 1.

Our work falls in the field of generative model-

driven tools and focuses on addressing the
maintenance issues arising from code generation.
We continue elaborating on parameters of the
problem and then brief the key contributions of our
work to address this issue.

1.1 Problem Definition

MDE tools cannot optimally address all required
features of an application at the software engineering
level. As a result, custom source code amendments
and modifications are always anticipated. Even if
advanced methods are deployed to modularize and
decouple generated code from custom application
code, one can never exclude the possibility that
interdependencies or custom updates may appear.

The typical lifecycle of the generated code is
outlined under Figure 2. As shown, a dependency is
introduced by having the application logic directly
refer and deploy generated components (middle
part). But for most languages this is overall
insufficient for effectively linking application and
generated code, practically requiring the generated
code to be also manually modified. Typical updates
relate to application functionality importing and

509Lilis Y., Savidis A. and Valsamakis Y..
Staged Model-Driven Generators - Shifting Responsibility for Code Emission to Embedded Metaprograms.
DOI: 10.5220/0004878605090521
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 509-521
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Tool chain in generative MDE tools: (1) interactive model editing; (2) code generation from a model; and (3)
model reconstruction from tags inserted in the generated source code, carrying model information.

Figure 3: Maintenance issues involved in the deployment of generative MDE tools, individually (left) or collectively (right).

Figure 2: Common growth of application code around the
originally generated code; future custom extensions and
updates eventually lead to bidirectional dependencies.

invoking, application-specific event handling,
linkage to third-party libraries that are not known to
the MDE tool, code improvement or refactoring.
This situation very quickly results into many
bidirectional dependencies (right part).

The latter maintenance issues are detailed in the
typical generative model-driven process shown in
Figure 3. Initially, if the code is not changed, source
regeneration and model reconstruction are well-
defined (left, steps 1-4). In other words, the MDE
tool works perfectly for both steps of the processing
loop. However, once the generated code is updated
(left, step 5), two problems directly appear. Firstly,

tag editing and misplacing may break model
reconstruction (left, steps 6-7), while any code
manually inserted outside the MDE tool causes a
model-implementation conflict. Secondly, source
regeneration overwrites all manually introduced
updates (left, steps 8-9). For real-life applications of
a considerable scale the latter may lead to the
adoption of the MDE tool only for the first version,
or worse, avoiding using an MDE tool at all.

Maintenance issues also arise when trying to
combine the outcome of multiple MDE tools. When
using multiple tools, a single application element
may end up being shared by different models. This
means that when the code for each model is
generated, there will be code repetitions for the
shared elements (right, steps 1-2). In this case, the
developer has to manually edit the generated sources
to drop any repeated definitions and link the code
properly (right, steps 3-4). Furthermore, the use of
different MDE tools implies different code
generators and thus different coding styles and
methods present in the generated code. Having all
generated sources conform to specific coding
standards inevitably requires manual refactoring
(right, step 5).

generated
code

app code

generated
code

app code

code updates

application code typically extends
around generated code

generated code is updated (filling
gaps or using app features)

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

510

1.2 Contributions

Our main contribution is an inversed responsibility
model for generative MDE tools (Figure 4) where:
(i) the code for model entities becomes available in
the form of ASTs; and (ii) the actual code generation
is applied on-demand and in-place through
generative macros embedded in the main program as
a metaprogram that is evaluated before compilation.

Figure 4: Outline of the proposed MDE approach.

This approach addresses the maintenance issues of
traditional generators and sets code manipulation as
a first-class concept in the MDE, revealing the value
of using a metaprogramming language in this
context. Apart from compile-time evaluation, we
also elaborate on how our approach can be applied
using the runtime metaprogramming facilities of
languages like Java and C#.

Overall, we propose an improved process where
the MDE tool outcome is read-only, decoupled from
source code generation, letting the application
directly deploy and manipulate generated code
fragments, instead of being built around them. In
this context, we also discuss how AST composition
allows combining sources whose code originates
from multiple MDE tools.

2 RELATED WORK

Our work targets the field of MDE and focuses on
the maintenance issues arising from source code
generation. In this context, we review advanced and
popular general-purpose generative MDE tools.

The EMF (Eclipse Foundation, 2008) project is a
modeling framework and code generation facility for
building applications based on a structured data
model. The model is described in the Ecore meta-
model, while code generation targets Java and uses
@generated annotations to specify the automatically

generated code segments. By default, all generated
code segments include this annotation and are
overwritten upon regeneration. In case the generated
code is manually extended, the @generated
annotations should be manually removed (or
alternatively turned into @generated not) to specify
that the annotated code segments should be
maintained and not overwritten upon regeneration.
However, manual extensions cannot be reflected
back to the model while model updates will be
discarded for manually extended code. Additionally,
misplacing or forgetting to remove the annotations
may result in losing manually written source code.

Acceleo (Obeo, 2006) is a code generator
implementing the OMG’s Model-To-Text-Language
specification. It is independent from the targeted
technology allowing the generation of any textual
format using plugins while it provides an OCL-
oriented (OMG, 2012) template-like definition for
expressing custom generators. Acceleo supports
incremental generation allowing developers to
regenerate target files without losing modifications
once explicit [protected] … [/protected] constructs
are used, translated into tagged comments that mark
a code region that will not be overwritten during
regeneration. Again, any intervention on such tags
breaks regeneration. Furthermore, placing such tags
requires an a priori knowledge of the locations
requiring manual updates, something not always
available during the design phase. Practically, this
means that for each required update, the developer
will have to go to the transformation script, insert a
protected code region, regenerate the code and
finally go back to the source to perform the update.
This is a tedious circle, while in our approach
updates are normally applied on the edited source
with no such context switches or regeneration.

Actifsource (Actifsource GmbH, 2010) is a
design and code generator tool focusing on domain-
driven software development. It utilizes a template-
based code generation approach including by default
various language generator templates, while
allowing new ones to be added for any language.
Like Acceleo, Actifsource also supports using
special tags to specify protected regions where
manually inserted code will not be overwritten upon
regeneration. Again, any intervention on these tags
causes maintenance issues once code is regenerated.

Umple (Badreddin and Lethbridge, 2013) is a
modeling tool that reduces the distance between
model and code by adopting UML abstractions
directly into a high-level programming language
code. This way, models become just another abstract
code view, eliminating the need for model extraction

MDE
Authoring Model

MDE
Generator Code ASTs

4.insert code via
generative macros

include

3.load AST
code fragments
and compose

2.invoked as
preprocessing

before
compilation

Main Program

Metaprogram

1. generate
ASTs

Staged�Model-Driven�Generators�-�Shifting�Responsibility�for�Code�Emission�to�Embedded�Metaprograms

511

as everything in the model is represented directly in
code. Umple can generate code for languages like
Java and PHP and allows embedding native code or
transforming the generated code through aspect-
oriented facilities. Umple’s philosophy for generated
code is that it should never be edited but treated as a
development artifact that can be thrown away and
recreated and thus, there is no issue of round-
tripping (Antkiewicz, 2007; Chalabine and Kessler,
2007). Our approach, maintains the separation
between model and code while overcoming the
round-trip issue through the in-place deployment of
code fragments generated by the model.

Papyrus (Lanusse et al., 2009) and Modelio
(Desfray, 2009) are both MDE tools offering code
generation for a many languages. They support the
full MDE development cycle allowing both model-
to-source and source-to-model transformations. For
the latter, they parse source files locating specific
code structures (e.g. classes, attributes, operations
etc.) in order to regenerate the model, while treating
any additional code they include as metadata. This is
an important step towards resolving the maintenance
issues; however, it cannot be applied in case the
generated code originates from multiple models.
Also, such a reverse engineering policy is valid for
general-purpose MDE tools but cannot be deployed
for mission specific tools. For example, in case of
MDE tools for user-interface code generation, like
GuiBuilder (Sauer and Engels, 2007) or GrafiXML
(Michotte and Vanderdonckt, 2008), it is practically
impossible to recognize the widget elements by
parsing manually written source code (Staiger,
2007). Our methodology can be deployed for both
general-purpose and mission-specific tools, while
still addressing the maintenance issues.

Maintaining manual updates after regeneration is
also possible by adopting the Generation Gap
Pattern (Vlissides, 1996). For instance, in
Xtext/Xtend (Bettini, 2013) the generated code is
placed in a separate source folder src-gen, whose
contents are overwritten and should thus never be
modified. On the first generation, Xtext also
generates stub classes in the normal source folder
that inherit from class in the src-gen folder. These
classes are never regenerated and can thus safely be
edited without the risk of being overwritten.
However, this approach does not work well when
generated classes are involved in existing class
hierarchies, while it also complicates system design.
Additionally, it does not address the issue of
combining generated code from multiple MDE tools.

Our proposition for improving the MDE process
involves metaprogramming techniques. In this

context, we also consider work utilizing generative
programming and aspect-oriented programming
techniques for MDE to be related to ours. Völter and
Groher (2007) explore aspect-oriented techniques
for model-driven code generation, while Hemel et
al. (2010) and Zschaler & Rashid (2011) treat source
code generation as another model transformation
utilize a rewriting-based technique to compose and
combine partial generation represented respectively
in AST and text form. While in all cases code
generation is achieved, the final source may be
freely edited with no additional consideration for the
involved maintenance issues.

3 STAGED METAPROGRAMS

Generally, metaprogramming relates to functions
which generate code, i.e. programs producing other
programs, while metaprogramming languages take
the task of code generation and support it as a first-
class language feature. This is a sort of reification of
the language code generator enabling programmers
to write code which generates extra source code.
When available as a macro system before
compilation, the method is known as compile-time
metaprogramming. Alternatively, if offered during
runtime – typically using the language reflection
mechanism – it is called runtime metaprogramming.
We focus on compile-time metaprogramming as it is
more powerful than its runtime case. In this context,
code generating macros are functions manipulating
code in the form of ASTs, and are evaluated by a
separate stage preceding normal compilation. Then,
they are substituted in the source text by the code
they actually produce. Due to the introduction of an
extra stage, and because macros may generate
further macros, thus requiring extra staging, such
languages are also called multistage languages
(Sheard et al., 2000; Taha, 2004). In our work we
use the dynamic object-object language Delta
(Savidis, 2012), along with its compile-time
metaprogramming extension (Lilis and Savidis,
2012). Popular meta-languages also include Lisp
(Steele, 1990), Scheme (Dybvig, 2009), MetaML
(Sheard, 1999), MetaOCaml (Calcagno et al., 2001),
Template Haskell (Sheard, 2002), MetaLua (Fleutot,
2007) and Converge (Tratt, 2005).

In the Delta language, meta-code involves meta
definitions and inline directives (i.e., code
generation), prefixed with the & and ! symbols
respectively. In particular, inline directives accept an
expression returning an AST and are the only way to
insert extra code into the main program.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

512

Figure 5: Evaluating generative macros with an extra
stage.

As shown in Figure 5, during the first stage the
compiler: (i) collects all scattered meta-code into a
single metaprogram; (ii) evaluates the program
while recording the output of the inline calls; and
(iii) removes all meta-code from the initial program
and replaces inline directives by the code they
produced. For example, consider the following code.

using std;
&ast = load_ast("<ast path>");
!(ast); code generation directive

The first line is normal code, a directive to
import standard library functions. But the next two
lines are meta-code, indicated by & and ! prefixes.
The second line loads an AST from a file, assume
the loaded AST to be the one of Figure 6. The third
line inserts the code implied by this AST into the
main program. As a result, after the first stage, and
before normal compilation, the main program is:

using std;
function square(x) { return x * x; }
print(square(2));

Such code is only transient, and exists inside the
compiler temporarily during the first compilation
stage. It is shown here for clarity. After this first
stage, the resulting source text constitutes the input
to the normal compilation phase, as if it was
originally written this way by the programmer.

Figure 6: Abstract syntax tree example.

The previous example shows only the creation
and inlining of an AST value. However,
metaprograms typically operate on AST values,
adding, removing or transforming nodes they
contain. For example, consider that we wanted to
extend the above code with an extra print statement.
To achieve this, we would have to obtain and
manipulate the children of the root stmts node:

&ast = load_ast("<ast path>");
&stmts = ast.get_children();
&stmts.push_back(<<print("...")>>);
!(ast); generate transformed code

The notation <<…>> is not a conceptual
symbolism, but actual Delta syntax relating to a
meta-language construct known as quasi-quoting.
Essentially, it is a compile-time operator that
converts the surrounded raw source-text to its
respective AST representation. For instance
<<1+2>> is equivalent to the AST of the
expression 1+2, not just the character string ‘1+2’.

Performing transformations on ASTs requires
knowledge of the particular AST structure as well as
information about the language AST representations.
Essentially, locating nodes that should be
transformed may involve tedious traversal of the
AST. This can be improved using a decoration
process that allows direct navigation across AST
nodes through named entities involved in the AST
structure. In the above example, inserting code
within the body of the square function would be
achieved with the following meta-code statement:

&ast.square.body.insert(<<...>>);

This way, high-level knowledge of the AST
contents and a simple tree manipulation API are
sufficient for introducing elaborate AST extensions.

4 PROPOSED PROCESS

The primary motivation for our work has been the
serious source code maintenance issue inherent in
the deployment of generative MDE tools. Although
we needed to avoid this problem, in the mean time
we wished to retain all powerful features of
generative MDE tools. Thus we started thinking of
an alternative path, in which: (i) the MDE tool
output would somehow remain invariant, that is in a
not-editable form; and (ii) the source code of the
application could still grow and evolve in an
unconstrained manner around it. This led us to the
idea of bringing staged metaprogramming into the
pipeline by enabling programmers algorithmically

& defs2

& defs6

!(AST‐expr4)

!(AST‐expr8)

defs2
inline AST‐expr4

defs6
inline AST‐expr8

defs1

defs3

defs5

defs7

defs1

defs3

defs5

defs7

inserted AST‐expr 4

inserted AST‐expr 8

initial
main program

extracted
staged code

updated
main program

first stage evaluates the staged code and
updates the initial program

Staged�Model-Driven�Generators�-�Shifting�Responsibility�for�Code�Emission�to�Embedded�Metaprograms

513

Figure 7: Top: Traditional MDE process where the generated source code files are manually updated with fill-in and extra
code. Bottom: The proposed MDE process where the tool output is in AST form and the programmer deploys embedded
metaprograms to load, compose and generate the model code that is integrated along with the custom application code.

manipulate the generated code including: loading,
processing and transforming. We continue detailing
our proposition for a refined model-driven process
and compare it against the traditional process. We
also discuss how a similar approach could be
deployed in languages that do not offer explicit
support for staging but support some degree of
runtime composition though a reflection API.

4.1 Refined Tool Chain

Our proposition for a refined model-driven process
is deployed on languages with explicit support for
staging and could be directly applied on all
multistage languages discussed earlier. We utilize
two stages of evaluation, one for the evaluation of
the generative macros and another one for the
normal program translation. In particular, with
staged code generation, the MDE process, outlined
under Figure 7 in analogy to the traditional
generative process, is improved as follows.

Initially, the model-driven tools generate code in
the form of language-specific ASTs. Apart from
code, the ASTs can also incorporate any special
code annotations, like those required by various Java
frameworks. ASTs are essentially read-only data,
meaning the result of the code generation remains
unchanged and thus code-to-model reconstruction is
unnecessary. Then, any custom application code,
that would typically require manual extensions on
top of the generated source code files, is instead
developed as a full program that deploys embedded
metaprograms to load and incorporate the model
code as needed. Essentially, these metaprograms
include functionality for reading and manipulating
ASTs as previously discussed, so their evaluation
can generate a transient model code version (in read-

only form) that can directly incorporate custom
application code. If any changes are performed on
the model, then further regeneration overwrites only
the ASTs and not the source file that contains the
custom application code. This means that on the next
translation the metaprograms will simply load the
updated AST versions, generate the updated
transient model code and then directly integrate it
with the application code without requiring any
additional actions from the programmer, effectively
improving the maintenance of the system.

The adoption of an AST representation for model
code also enables the combined deployment of
multiple MDE tool outputs. Metaprograms can load
and manipulate multiple ASTs regardless of the
originating tool, so supporting such combination is
just a matter of specifying the appropriate AST
composition for the input models. Additionally,

Figure 8: Example of deploying the proposed MDE
process. Highlighted steps 1-8 are discussed within text.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

514

metaprograms may contain any further application-
specific composition or editing logic. This means
that it is possible to perform any code transformation
on a source fragment before inserting it in the final
source. Finally, after the staged evaluation has
produced the final source, the process continues with
the normal program translation or evaluation.

To better illustrate the steps involved in the
proposed process we discuss the deployment
example of Figure 8. The scenario involves a model
representing an API for mathematical functions
where we want to automatically derive the function
skeletons and then complete them with the
implementation code. For brevity, we only show the
implementation of a single function.

The model is initially passed to the AST
generator to produce its AST code representation
(step 1). The latter will contain the code skeleton for
the definition of function square, and is stored as a
data file (step 2). The programmer then develops the
custom application code and uses an embedded
metaprogram to integrate it with the model code. In
particular, the metaprogram begins by loading the
AST data (step 3) and then manipulating it to
incorporate the custom application code directly into
the loaded model code (step 4). The custom
application code here is just the return x*x;
statement that is turned into an AST through quasi-
quotes (step 5). The call to ast.square.body.insert
will then combine the two ASTs (step 6), resulting
in a single AST with the fully implemented function.
This AST is then inserted directly in the program
source through a code generation directive (step 7),
leading to the final source code version (step 8).

4.2 Comparing with Current Practices

We continue with a comparison between the
proposed and the traditional process when model
changes are involved. We reuse the model of
mathematical functions, and suppose we want to
extend it with further definitions.

In our approach, the application code specified
by the programmer as well as other client code that
relies on it, works with no issues and without
involving any additional programmer intervention.
Any existing functions for which implementations
where originally specified will still be present in the
new AST, so the metaprogram will combine them
with their matching implementations as before.
Newly introduced functions will simply be inserted
with empty implementations. For them to be fully
functional, the programmer should naturally provide
their implementations explicitly.

A traditional MDE tool that blindly overwrites
source code upon regeneration naturally requires
additional actions to maintain the previously
specified function implementations, involving a
temporary copy of the source code and a manual
code merge after the regeneration process.

More elaborate tools that allow custom
extensions to be retained across regenerations, i.e.
automatically merge manually updated code with
new model code, yield better results but do not fully
solve the problem. For instance, consider the
previously discussed use of @generated annotations
kept only on functions that should be overwritten
and removed from functions with custom extensions.
For the mathematical API example, this means that
original functions that were implemented no longer
have a @generated annotation. This way, when the
API is extended, regeneration will introduce the new
functions without overwriting the previous ones,
achieving the desired functionality. However,
consider a different model update involving
modifications for already implemented functions,
like adding an extra argument to some functions.
Since original functions versions are maintained, the
regeneration process introduces duplicate function
skeletons with updated prototypes. The programmer
should then manually move the implementations
from the original bodies to the matching new ones,
drop the old entries and finally specify that the new
functions contain user code by removing their
@generated annotation. Clearly, for multiple model
updates or a large number of modeled entities this is
a tedious and error-prone process.

Using our approach, such a model update
requires no further actions and is handled as before:
the updated model is loaded in AST form and then
the function implementations are inserted where
needed through AST manipulation without being
affected by the newly introduced argument.
Practically, the metaprogram specifies the logic for
integrating custom application code directly within
the model code, so as long as the model structure
matches this insertion logic, no model updates break
the regeneration process. Inconsistencies in the
metaprogram can only occur if some model entities
are removed, causing any meta-code that tries to
access them to fail. Nevertheless, the same happens
in traditional tools when previously generated code
that is retained tries to access model entities that no
longer exist, resulting into compilation errors.

4.3 Deploying using Reflection

Not all popular languages support staging, even

Staged�Model-Driven�Generators�-�Shifting�Responsibility�for�Code�Emission�to�Embedded�Metaprograms

515

Figure 9: Applying the proposed generative MDE process without explicit staging; the application composes intermediate
or source text and then deploys the language reflection API for compilation and invocation (JIL stands for Java Intermediate
Language, CIL for the Common Intermediate Language of .NET). The entire runtime conversion, composition and
compilation process is cached – it is only repeated when the ASTs change, i.e. upon regeneration.

though there are a few third party extensions such as
Metaphor (Neverov and Roe, 2004) and Mint
(Westbrook et al., 2010). In this context, one may
deploy the reflection mechanism of languages like
C# or Java to practice a similar source code
management and generation pipeline as the one
discussed in the previous section. This option is
detailed under Figure 9, showing that the language
compiler and the dynamic class loading and method
invocation facilities (i.e. reflection API) are directly
deployed. The entire process starting the conversion
from ASTs to intermediate representations (very
flexible, suggested), or alternatively to source text
(more rigid, not suggested), should be explicitly
implemented as it is not automated by the languages.
However, it is cached, meaning it is not repeated
during execution, but applied once per AST version.
The oval of Figure 9 labeled as composition
parameters represents the need for performing
custom mixing between the automatically generated
source code and the manually inserted code,
something that is apparent in the presence of
Composer as an integral part of the application. This
is similar to AST composition alternatives, although
at the intermediate representation level, and is very
critical to ensure that maximum code mixing
freedom is provided to developers.

5 CASE STUDIES

To validate our approach and assess its expressive
power and engineering validity, we have carried out
two case studies with proof-of-concept prototypes,
one focusing on user-interface code generation and
another one creating an entire class hierarchy based
on a given model. The goal of our studies was
twofold: (i) to show that the maintenance issues are
effectively eliminated; and (ii) to demonstrate the

huge expressive power of metaprogramming for
flexible code composition. The source code for the
case studies along with a video demonstrating the
entire MDE process is available at the Delta site
(Savidis, 2012) under the metaprogramming section.

5.1 User Interface Modeling

We have adopted wxFormBuilder (2006), a popular
publicly available interface builder for the
wxWidgets cross-platform library. It offers a typical
rapid-application development cycle with interactive
user-interface construction, and outputs interface
descriptions into its custom language-neutral format
called XRC (XML Interface Resources). Using this
tool, we modeled the interface of a paint application.
To convert XRC data to the Delta language ASTs
we built and deployed an appropriate AST
generator. Then, using the metaprogramming
features of the Delta language, we imported and
manipulated the application ASTs, and also added
extra interactive features and behavior to it, besides
the ones introduced just with wxFormBuilder.
Finally, we inserted custom extra code (e.g. event
handling) to offer a fully-functional application.

The entire modeling and implementation process
was incremental so as to involve multiple model
updates. In particular, we began with a primitive
user-interface model, consisting only of the canvas
and the painting tools (Figure 10, top-left), generated
the corresponding AST and provided the necessary
source code implementation (Figure 10, middle).
Then we gradually updated the user interface model
to include additional toolbars (Figure 10, top-right).
For each model update, we also provided the
matching implementation code (Figure 10, bottom).
Despite model updates, no maintenance issues arose
during the entire process. Actually, after each model
update, the previous source code version compiled

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

516

Figure 10: Deploying our MDE process for user-interface
generation. Top: Initial and updated interface models;
Middle: Original application code encompassing staged
code; Bottom: Code extensions for the updated model.

and executed normally without any changes, while
naturally offering no interaction for the newly
introduced toolbar. Finally, implementing new
functionality simply required inserting code in the

source file where necessary.

5.2 Class Hierarchy Modeling

We used the Eclipse Modeling Framework (EMF) to
model a class hierarchy for the core logic of a paint
application. Among other things, the model included
functionality for drawing shapes, containing classes
like points, lines, circles, etc. The model was created
through the Ecore meta-model and its specification
was generated in XMI format. Then, as with XRC
earlier, we implemented a custom generator from
XMI to ASTs. Figure 11 shows the model in the
EMF Editor, the respective code structure (shown as
source text, although they are manipulated in AST
form) as well as the deployment code required to
inline the code AST in-place with the normal
program code. Again during the process, we
reloaded the model and regenerated the XMI
specification to verify that no maintenance issues
were introduced in the development process.

For the method implementations of the modeled
classes we practiced two alternative methods. The
first one involved specifying the method bodies
directly in the model through the use of special
EAnnotation elements (Figure 11 top-left,
highlighted). The second one did not involve any

Figure 11: Top-left: Ecore model of the target class hierarchy; Top-right: Code structure (AST) generated by the model;
Bottom: Deployment code for loading the model code, performing manual updates through AST editing and inlining the
final AST code. The initial value of the meta-variable classes corresponds to the code structure shown at top-right.

Staged�Model-Driven�Generators�-�Shifting�Responsibility�for�Code�Emission�to�Embedded�Metaprograms

517

model editing, but relied on directly inserting code
in the method bodies through AST manipulation as
previously discussed. This approach may seem more
difficult to adopt, but in fact it is easy to develop and
offers several advantages over the first one.

When inserting the code directly in the model,
the code is entered as raw text and thus lacks any
programming facilities. Additionally, code overview
is severely restricted, as the model view truncates
the annotated text and full code inspection is only
allowed for a single selected EAnnotation. Of
course, there is no direct notion of parameterization
or reuse; the only option short of code repetition is
to explicitly introduce new model methods,
implement their code through a new EAnnotation
and use corresponding invocations where needed,
again as raw text placed in other EAnnotations. In
any case, inputting source code in separated text
areas is far from a productive development method.

Regarding the second approach, creating or
inserting code through metaprogramming is
achieved through additional syntax (quasi-quotes)
directly at code editing level. This means that the
developer may utilize all typically offered code
facilities like syntax highlighting, auto-completion,
refactoring tools, etc. Additionally, different code
segments (ASTs) corresponding to related methods
or classes may be placed in the same source location
as would be the case if the entire class was manually
written by the developer, thus supporting the typical
source code overview. Finally, since ASTs are
actually metaprogram data, they are subject to
standard software engineering practices like
parameterization, encapsulation, composition, etc.

5.3 Combining Modeling Tools

The last step of our case study focused on obtaining
the code generated by the previously discussed
methods and combining it along with the custom
application logic to implement a fully functional
paint application. To emphasize the compositional
flexibility of our proposed approach in combining
independently authored interfaces under a single
system, we further utilized two separate user-
interface models, one for the main paint interface
and another for the shapes toolbar extension.
A simple concatenation of the generated sources
caused no direct compilation conflicts; however it
was far from sufficient for deriving a fully-
functional application. In fact, many manual updates
were necessary for both generated components,
some of them involving bidirectional dependencies.
First, the two interfaces had to be combined to a
single one. Then, certain methods of the class
hierarchy like draw required invoking UI-related
operations. However, the class hierarchy model was
unaware of the deployed UI library, meaning that
such information could not be available in the model
and would thus have to be explicitly expressed as a
manual extension in the generated sources. Finally,
we needed to combine the generated code with
the custom application logic. The meta-code
implementing the above functionality is outlined
under Figure 12, with details removed for clarity.

We begin by loading the ASTs that were
previously generated by the XRC interface
definitions (both the paint UI and the shapes toolbar
extension) and the XMI class hierarchy model (step

Figure 12: Meta-code to load, manipulate and inline the source code of all modeled aspects of our system. The result is a
fully functional paint application like that shown on the top-right of Figure 7.

using wx; normal code, directive for importing the wxW idgets GUI toolkit

&paintUI = load_ast("paint.ast"); load the AST of the paint application user-interface code
&shapesUI = load_ast("shapes.ast"); load the AST of the shapes toolbar user-interface code
&classes = load_ast("classes.ast"); load the AST of the class hierarchy for the toolset

&function MergeGUI(main, toolbar){…} compile-time function to integrate an interface containing
&MergeGUI(paintUI, shapesUI); a toolbar UI to the main program UI

classes.Geometry.Circle.draw.body = insert custom implementation for method Circle::draw(dc)
<<dc.drawcircle(@center, @radius);>>; dc: argument, @center and @radius: circle attributes

…other shape method implementations are inserted here as well…

…custom functionality and event handling code…

…any other meta-code or normal code may be freely inserted here…
!(classes); inline the transformed classes AST at this source location
…any other meta- or normal code may be freely inserted here…
!(paintUI); inline the transformed paintUI AST at this source location – generates function CreateGUI
…any other meta- or normal code may be freely inserted here…

wx::app_start(CreateGUI); normal code, uses the generated CreateGUI function to launch the GUI

1

2

3

4

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

518

1). The interface definitions are combined as needed
to generate the final application interface (step 2). In
particular, the top level frame of the shapes toolbar
is dropped and the remaining interface component
(i.e. a panel) is inserted in the frame of the paint
application before the canvas. Then, we implement
the various methods of the class hierarchy (step 3)
by creating and inserting AST values in the method
bodies as previously discussed Notice that the quasi-
quoted code can directly link to UI elements.
Finally, once all appropriate transformations and
extensions have been performed on the ASTs, they
can be inlined to the final program at some source
location (step 4). The AST of the class hierarchy
should be inlined first so as to be available in the
subsequent UI code that utilizes it. The code of the
class hierarchy also requires the GUI toolkit
functionality; however it is already visible through
the import directive present in the first line.

6 DISCUSSION

Our approach overcomes the maintenance issues of
generative MDE tools; however its deployment
naturally involves some tradeoffs.

Firstly, it requires applying an advanced
programming technique such as metaprogramming
in an already demanding field like MDE, potentially
leading to increased system complexity. For
instance, creating and manipulating ASTs to perform
code updates is arguably harder than manually
editing the corresponding source code segments.
Nevertheless, the use of quasi-quotes enables
creating ASTs just like writing normal code, while
AST manipulation can be simplified with better
support for AST traversal (e.g. the name decoration
process discussed earlier) along with a simple tree
editing library.

Another issue concerns the transformation of the
MDE tool output into an AST and requires a
separate converter per deployment language as well
as per model format. For instance, in our test cases
we had to build two converters (one for XRC and
another for XMI) to support the two modeling tools
we used. Moreover, if we wanted to use our
approach in another language we would have to
create similar converters generating ASTs for that
language. In a setup with varying languages and
diverse model formats this arguably introduces an
overhead in the MDE process. However, a single
converter may be used for developing multiple
applications that share a development language and
a model format thus reducing the amortized effort

required for a particular application. The effort
required for such a converter is proportional to the
complexity of the target model specification.
Typically, it should be similar to creating a model-
to-code transformation but with the output being the
source code AST instead of the source code text. For
MDE tools that already provide model-to-code
transformations in the deployment language, an
alternative requiring significantly less effort is to
first use the transformation to get the generated
sources, parse them into ASTs and finally
manipulate them as needed (e.g. remove code
segments not directly relevant to the modeled
entities) to be ready for deployment. Additionally, it
is possible to further reduce the effort required to
implement a converter for a specific format across
different languages. The converter may have a
language-independent core handling the target
format and utilize multiple language-dependent
back-end plugins to support the various deployment
languages. In this sense, all common converter
functionality is only written once, thus minimizing
the overhead of supporting additional languages.

7 CONCLUSIONS

Currently, model-driven engineering represents a
domain of powerful development tools facilitating
the modeling of systems and supporting the
transformation process from abstract to concrete
models, eventually down to the physical platform
level. Generative MDE tools support the production
of concrete application implementations directly at
the source code level. Such a facility is very helpful,
powerful and flexible for software development.
However, it also causes maintenance issues once
extensions and updates are manually introduced over
the initially generated model code or when trying to
combine sources coming from multiple MDE tools.

To cope with such maintenance issues we
propose the exploitation of the metaprogramming
language facilities and suggest an improved model-
driven code of practice relying on the manipulation
of source code fragments by clients directly as data.
In this approach, the generator components of MDE
tools need output ASTs, not source code, while
clients should import and compose ASTs as needed,
before eventually performing on-demand and in-
place code generation.

We have carried out a case study to experiment
and validate the engineering proposition using a
compile-time metaprogramming language, a user-
interface builder and a general purpose modeling

Staged�Model-Driven�Generators�-�Shifting�Responsibility�for�Code�Emission�to�Embedded�Metaprograms

519

tool. Overall we were truly impressed by the
compositional flexibility which allowed us to safely
and easily manipulate and extend the produced
interface and application code without suffering
from maintenance issues. We believe our work
reveals the chances by combining metaprogramming
and generative MDE tools, and anticipate more
efforts to further exploit this field.

REFERENCES

Actifsource GmbH (2010). Actifsource Code Generator
for Eclipse. http://www.actifsource.com/_downloads/
actifsource_code_generator_for_Eclipse_en.pdf
Accessed 29 Oct 2013.

Antkiewicz, M. 2007. Round-trip engineering using
framework-specific modeling languages. In
Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and
applications companion (OOPSLA'07).ACM,927-928.
DOI= http://doi.acm.org/10.1145/1297846.1297949.

Badreddin, O. and Lethbridge, T.C. 2013. Model Oriented
Programming: Bridging the Code-Model Divide. In
Proceedings of the 5th International Workshop on
Modeling in Software Engineering, IEEE, pp. 69-75,
DOI=http://dx.doi.org/10.1109/MiSE.2013.6595299.

Bettini, L. 2013. Implementing Domain-Specific
Languages with Xtext and Xtend. Packt Publishing.

Calcagno, C., Taha, W., Huang, L. and Leroy, X. 2001. A
bytecode-compiled, type-safe, multi-stage language.

Chalabine, M. and Kessler, C. 2007. A Formal Framework
for Automated Round-Trip Software Engineering in
Static Aspect Weaving and Transformations. In
Proceedings of the 29th international conference on
Software Engineering (ICSE '07). IEEE, 137-146.
DOI= http://dx.doi.org/10.1109/ICSE.2007.7.

Desfray, P. 2009. Modelio: Globalizing MDA. In Proc. of
the Tools and Consultancy Track of the Fifth
European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA-FA 2009).

Dybvig, R. K. 2009. The Scheme Programming Language
(fourth edition). The MIT Press.

Eclipse Foundation. 2008. Eclipse Modeling Framework
(EMF). http://www.eclipse.org/modeling/emf/
Accessed 29 Oct 2013.

Fleutot, F. 2007. Metalua Manual. http://metalua.luaforge.
net/metalua-manual.html. Accessed 29 Oct 2013.

Hemel, Z., Kats, L. C. L., Groenewegen, D. M. and
Visser, E. 2010. Code generation by model
transformation: a case study in transformation
modularity. Software and Systems Modelling,
9(3):375-402. DOI=http://dx.doi.org/10.1007/s10270-
009-0136-1.

Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C.,
Gerard, S., Tessier, P., Schnekenburger, R., Dubois,
H. and Terrier, F. 2009. Papyrus UML: an open source
toolset for MDA. In Proceedings of the Tools and

Consultancy Track of the Fifth European Conference
on Model-Driven Architecture Foundations and
Applications (ECMDA-FA 2009).

Lilis, Y. and Savidis, A. 2012. Supporting Compile-Time
Debugging and Precise Error Reporting in Meta-
Programs. In TOOLS 2012, International Conference
on Technology of Object�Oriented Languages and
Systems, Springer LNCS 7304, pp. 155-170. DOI=
http://dx.doi.org/10.1007/978-3-642-30561-0_12.

Michotte, B. and Vanderdonckt, J. 2008. GrafiXML, a
Multi-target User Interface Builder Based on
UsiXML. In Proceedings of ICAS 2008 4th
International Conference on Autonomic and
Autonomous Systems, Gosier, Guadeloupe, IEEE, 15-
22. DOI= http://dx.doi.org/10.1109/ICAS.2008.29.

Neverov, G. and Roe, P. 2004. Metaphor: A Multi-Stage,
Object-Oriented Programming Language. In
Proceedings of the Third International Conference on
Generative Programming and Component
Engineering (GPCE '04), Vancouver, Canada,
Springer LNCS 3286, pp. 168-185,
DOI=http://dx.doi.org/ 10.1007/978-3-540-30175-2_9.

Obeo. 2006. Acceleo: MDA generator. http://www.
acceleo.org/pages/home/en. Accessed 29 Oct 2013.

OMG. 2012. Object Management Group Object Constraint
Language (OCL). http://www.omg.org/spec/OCL/
ISO/19507/PDF/ Accessed 29 Oct 2013.

Sauer, S. and Engels, G. 2007. Easy model-driven
development of multimedia user interfaces with
GuiBuilder. In Proceedings of the 4th international
conference on Universal Access in Human Computer
Interaction (UAHCI'07), Beijing, China, Springer
LNCS 4554, pp. 537-546, DOI= http://dx.doi.org/
10.1007/978-3-540-73279-2_60.

Savidis, A. 2012. Delta Programming Language.
Available online from: http://www.ics.forth.gr/hci/
files/plang/Delta/Delta.html. Accessed 29 Oct 2013.

Sheard, T. 1999. Using MetaML: A Staged Programming
Language. In: Advanced Functional Programming.
Springer LNCS 1608, pp. 207–239, DOI=http://
dx.doi.org/10.1007/10704973_5.

Sheard, T., Benaissa, Z. and Martel, M. 2000. Introduction
to Multistage Programming Using MetaML. Pacific
Software Research Center, Oregon Graduate Institute,
2nd edition. Available from: http://web.cecs.pdx.edu/
~sheard/papers/manual.ps. Accessed 29 Oct 2013.

Sheard, T. and Peyton Jones, S. 2002. Template
metaprogramming for Haskell. SIGPLAN Not. 37, 12,
60-75, DOI=http://dx.doi.org/10.1145/636517.636528.

Staiger, S. 2007. Static Analysis of Programs with
Graphical User Interface. In Proceedings of 11th
European Conference on Software Maintenance and
Reengineering (CSMR '07). IEEE, pp. 252-264,
DOI=http://dx.doi.org/10.1109/CSMR.2007.44.

Steele, G. L. 1990. Common Lisp: The Language. Digital
Press, second edition.

Taha, W. 2004. A gentle introduction to multi-stage
programming. In Proceedings of Domain-Specific
Program Generation, Springer LNCS 3016, pp. 30-50.
DOI=http://dx.doi.org/10.1007/978-3-540-25935-0_3.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

520

Tratt, L. 2005. Compile-time meta-programming in a
dynamically typed OO language. In Proceedings of the
2005 Symposium on Dynamic Languages (DLS '05).
ACM, New York, USA, pp. 49-63, DOI=http://
doi.acm.org/10.1145/1146841.1146846.

Vlissides, J. 1996. Generation Gap [software design
pattern]. C++ Report, 8(10), pp. 12, 14-18.

Völter, M. and Groher, I. 2007. Handling variability in
model transformations and generators. In Proceedings
of the 7th OOPSLA Workshop on Domain-Specific
Modeling (DSM ’07). Available online from:
http://www.voelter.de/data/workshops/HandlingVaria
bilityInModelTransformations.pdf.

Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif,
T. and Taha, W. 2010. Mint: Java multi-stage
programming using weak separability. In Proceedings
of the 2010 ACM SIGPLAN conference on
Programming language design and
implementation. PLDI '10 ACM, New York, 400-411.
DOI=http://doi.acm.org/10.1145/1806596.1806642.

wxFormBuilder. 2006. wxFormBuilder - A RAD tool for
wx GUI design. http://sourceforge.net/projects/
wxformbuilder/ Accessed 29 Oct 2013.

Zschaler, S. and Rashid, A. 2011. Towards modular code
generators using symmetric language-aware aspects.
In Proceedings of the 1st International Workshop on
Free Composition (FREECO '11). ACM, New York,
NY, USA, Article 6, 5 pages. DOI=http://
doi.acm.org/10.1145/2068776.2068782.

Staged�Model-Driven�Generators�-�Shifting�Responsibility�for�Code�Emission�to�Embedded�Metaprograms

521

