Similar to this work, a future research might in-
vestigate the potential benefits from tuning of con-
figuration parameter values for Online Transactional
Processing (OLTP) workloads. Furthermore, another
relevant work, in complement to Soror’s work (Soror
et al., 2008), could be a tool to perform analysis on
both types of concurrent disk access as well on the
executing SQL queries. This way, tuning rules could
be suggested on-the-fly, which would allow RDBMS
to answer requests more accurately against the con-
stant resources variation and workloads common in
cloud computing environments.
REFERENCES
(2013). Bonnie++ benchmark. Available at URL:
http://www.coker.com.au/bonnie++/.
(2013). Dbt3-tollkit database test 3. Available at URL:
http://sourceforge.net/projects/osdldbt/files/dbt3.
(2013). Postgresql: The world’s most advanced open source
database. http://www.postgresql.org.
Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Gener. Comput.
Syst., 25(6):599–616.
Cecchet, E., Singh, R., Sharma, U., and Shenoy, P. (2011).
Dolly: virtualization-driven database provisioning for
the cloud. SIGPLAN Not., 46(7):51–62.
Council, T. P. P. (2013). Tpc benchmark h - version 2.16.0.
Technical report, Transaction Processing Performance
Council.
Debnath, B. K., Lilja, D. J., and Mokbel, M. F. (2008). Ex-
ploiting the impact of database system configuration
parameters: A design of experiments approach. vol-
ume 31, pages 3–10.
Delimitrou, C., Sankar, S., Khessib, B., Vaid, K., and
Kozyrakis, C. (2012). Time and cost-efficient model-
ing and generation of large-scale tpcc/tpce/tpch work-
loads. In Proceedings of the Third TPC Technol-
ogy conference on Topics in Performance Evalua-
tion, Measurement and Characterization, TPCTC’11,
pages 146–162, Berlin, Heidelberg. Springer-Verlag.
Duan, S., Thummala, V., and Babu, S. (2009). Tuning
database configuration parameters with ituned. Proc.
VLDB Endow., 2(1):1246–1257.
Hsu, W. W., Smith, A. J., and Young, H. C. (2001). I/o
reference behavior of production database workloads
and the tpc benchmarks an analysis at the logical level.
ACM Trans. Database Syst., 26(1):96–143.
Rao, J., Bu, X., Xu, C.-Z., Wang, L., and Yin, G. (2009).
Vconf: a reinforcement learning approach to virtual
machines auto-configuration. In Proceedings of the
6th international conference on Autonomic comput-
ing, ICAC ’09, pages 137–146, New York, NY, USA.
ACM.
Smith, G. (2010). PostgreSQL 9.0 High Performance,
chapter Server Configuration Tuning, pages 125–149.
Packt Publishing, Limited.
Smith, J. E. and Nair, R. (2005). The architecture of virtual
machines. Computer, 38(5):32–38.
Soror, A. A., Aboulnaga, A., and Salem, K. (2007).
Database virtualization: A new frontier for database
tuning and physical design. In Proceedings of the
2007 IEEE 23rd International Conference on Data
Engineering Workshop, ICDEW ’07, pages 388–394,
Washington, DC, USA. IEEE Computer Society.
Soror, A. A., Minhas, U. F., Aboulnaga, A., Salem, K.,
Kokosielis, P., and Kamath, S. (2008). Automatic
virtual machine configuration for database workloads.
In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD
’08, pages 953–966, New York, NY, USA. ACM.
Storm, A. J., Garcia-Arellano, C., Lightstone, S. S., Diao,
Y., and Surendra, M. (2006). Adaptive self-tuning
memory in db2. In Proceedings of the 32nd inter-
national conference on Very large data bases, VLDB
’06, pages 1081–1092. VLDB Endowment.
Tran, D. N., Huynh, P. C., Tay, Y. C., and Tung, A. K. H.
(2008). A new approach to dynamic self-tuning of
database buffers. Trans. Storage, 4(1):3:1–3:25.
Xiong, P. (2012). Dynamic management of resources and
workloads for rdbms in cloud: a control-theoretic ap-
proach. In Proceedings of the on SIGMOD/PODS
2012 PhD Symposium, PhD ’12, pages 63–68, New
York, NY, USA. ACM.
ICEIS2014-16thInternationalConferenceonEnterpriseInformationSystems
192