also runs a local search on each individual, further
improving the results.
Future research include improvements on the
memetic algorithm in order to investigate a wider
search space, not just the one provided by the VD-
PLANARIZE. One option is to use the final solution
of the MAVD-PLANARIZE as a starting point to
another search procedure (such as simulated anneal-
ing, GRASP, VNS, PSO, etc) that does not rely on
the VD-PLANARIZE, but instead search in different
neighbourhoods. Another option is to adapt such
neighbourhoods to the local search procedure already
presented in this work. In any case, investigating
a wider range of neighbourhoods could potentially
improve the quality of the obtained solutions.
REFERENCES
Battista, G. D. and Nardelli, E. (1988). Hierarchies and
planarity theory. IEEE Transactions on Systems, Man,
and Cybernetics, (18):10351046.
Booth, K. S. and Lueker, G. S. (1976). Testing for the con-
secutive ones property, interval graphs, and graph pla-
narity using pq-tree algorithms. Journal of Computer
and System Sciences, 13(3):335 – 379.
Chiba, T., Nishioka, I., and Shirakawa, I. (1979). An al-
gorithm of maximal planarization of graphs. In Proc.
1979 IEEE Symp. on Circuits and Sys, pages 649–652.
Constantino, A. A., de Mendonc¸a, C. F. X., and Pinheiro,
R. L. (2011). Um algoritmo heurstico de complex-
idade linear para planarizac¸o de grafos por remoc¸o
de vrtices. In In Proc. XLIII Simp´osio Brasileiro de
Pesquisa Operacional, XLIII SBPO, pages 1–11.
de Figueiredo, C. M. H., Faria, L., and Mendonc¸a, C. F. X.
(1999). Optimal node-degree bounds for the complex-
ity of nonplanarity parameters. In Proceedings of the
tenth annual ACM-SIAM symposium on Discrete al-
gorithms, SODA ’99, pages 887–888.
Eades, P. and de Mendonc¸a, C. F. X. (1993). Heuristics for
planarization by vertex splitting. In In Proc. ALCOM
Int. Workshop on Graph Drawing, GD’93, pages 83–
85.
Even, S. (2011). Graph Algorithms. Cambridge University
Press, New York, NY, USA, 2nd edition.
Even, S. and Tarjan, R. E. (1976). Computing an st-
numbering. Theoretical Computer Science, 2(3):339
– 344.
Faria, L., de Figueiredo, C., and Mendonc¸a, C. (2001a).
Splitting number is np-complete. Discrete Applied
Mathematics, 108(12):65 – 83. ¡ce:title¿Workshop
on Graph Theoretic Concepts in Computer Sci-
ence¡/ce:title¿.
Faria, L., de Figueiredo, C. M. H., and de Mendonc¸a Neto,
C. F. X. (2001b). On the complexity of the approx-
imation of nonplanarity parameters for cubic graphs.
pages 18–21.
Faria, L., de Figueiredo, C. M. H., and de Mendonc¸a Neto,
C. F. X. (2004). On the complexity of the approxi-
mation of nonplanarity parameters for cubic graphs.
Discrete Applied Mathematics, 141(1-3):119–134.
Faria, L., de Figueiredo, C. M. H., Gravier, S.,
de Mendonc¸a, C. F., and Stolfi, J. (2006). On max-
imum planar induced subgraphs. Discrete Applied
Mathematics, 154(13):1774 – 1782.
Fisher, G. and Wing, O. (1966). Computer recognition and
extraction of planar graphs from the incidence matrix.
Circuit Theory, IEEE Transactions on, 13(2):154–
163.
Garey, M. and Johnson, D. (1983). Crossing number is np-
complete. SIAM Journal on Algebraic Discrete Meth-
ods, 4(3):312–316.
Gibbons, A. (1985). Algorithmic Graph Theory. Cambridge
University Press.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition.
Jayakumar, R., Thulasiraman, K., and Swamy, M. (1989).
O(n2) algorithms for graph planarization. Computer-
Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 8(3):257–267.
Lempel, A., Even, S., and Cederbaum, I. (1967). An al-
gorithm for planarity testing of graphs. In Theory of
Graphs, International Symposium, pages 215–232.
Liu, P. C. and Geldmacher, R. C. (1977). On the deletion of
nonplanar edges of a graph. In Proc. 10th S-E Conf.
Combinatorics, Graph Theory, and Computing, Boca,
pages 727–738.
Marek-Sadowska, M. (1978). Planarization algorithms for
integrated circuits engineering. In in Proc. IEEE Inter-
national Symposium on Circuits and Systems, pages
919–923.
Ozawa, T. and Takahashi, H. (1981). A graph-planarization
algorithm and its applications to random graphs. In in
Graph Theory and Algorithms, Lecture Notes in Com-
puter Science, pages 95–107. Springer-Verlag.
Pasedach, K. (1976). Criterion and algorithms for deter-
mination of bipartite subgraphs and their application
to planarization of graphs. Graphen-Sprach. Algo-
rithm. Graphen, 1. Fachtag. graphen-theor. Konz. Inf.,
Berlin(West) 1975, 175-183 (1976).
Pinheiro, R. L., Constantino, A. A., and de Mendonc¸a and,
C. F. X. (2012). Um algoritmo evolutivo para
planarizac¸˜ao de grafos por remoc¸˜ao de v´ertices. In
In Proc. XLIV Simp´osio Brasileiro de Pesquisa Op-
eracional, XLIV SBPO, pages 1–12.
Robertson, N. and Seymour, P. (1995). Graph minors .xiii.
the disjoint paths problem. Journal of Combinatorial
Theory, Series B, 63(1):65 – 110.
Yannakakis, M. (1978). Node-and edge-deletion np-
complete problems. In Proceedings of the tenth an-
nual ACM symposium on Theory of computing, STOC
’78, pages 253–264, New York, NY, USA. ACM.
AnEvolutionaryAlgorithmforGraphPlanarisationbyVertexDeletion
471