Glass, R. L. (1999). The Realities of Software Technology
Payoffs. Communications of the ACM,, 42(2):74–79.
Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empir-
ical Validation of Object-Oriented Metrics on Open
Source Software for Fault Prediction. IEEE Transac-
tions on Software Engineering, 31(10):897–910.
Harrison, R., Counsell, S., and Nithi, R. V. (1998). An
Investigation into the Applicability and Validity of
Object-Oriented Design Metrics. Empirical Software
Engineering, 3(3):255–273.
Huck, S. W. (2012). Reading Statistics and Research. Pear-
son, Boston, MA, USA.
Janes, A., Scotto, M., Pedrycz, W., Russo, B., Stefanovic,
M., and Succi, G. (2006). Identification of Defect-
Prone Classes in Telecommunication Software Sys-
tems Using Design Metrics. Information Sciences,
176(24):3711 – 3734.
Johari, K. and Kaur, A. (2012). Validation of Object Ori-
ented Metrics Using Open Source Software System:
An Empirical Study. SIGSOFT Software Engineering
Notes, 37(1):1–4.
Kakarontzas, G., Constantinou, E., Ampatzoglou, A., and
Stamelos, I. (2012). Layer assessment of object-
oriented software: A metric facilitating white-box
reuse. Journal of Systems and Software, 86:349–366.
Kitchenham, B. (2010). Whats up with Software Metrics?
A Preliminary Mapping Study. Journal of Systems
and Software, 83(1):37–51.
Kocaguneli, E., Gay, G., Menzies, T., Yang, Y., and Ke-
ung, J. W. (2010). When to Use Data from Other
Projects for Effort Estimation. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’10, pages 321–324, New
York, NY, USA. ACM.
Lanza, M. (2003). CodeCrawler - Lessons Learned in
Building a Software Visualization Tool. In In Pro-
ceedings of CSMR 2003, pages 409–418. IEEE Press.
Lanza, M. and Marinescu, R. (2006). Object Oriented Met-
rics in Practice. Springer, Berlin.
Lorenz, M. and Kidd, J. (1994). Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA.
Menzies, T., Butcher, A., Marcus, A., Zimmermann, T.,
and Cok, D. (2011). Local vs. Global Models for Ef-
fort Estimation and Defect Prediction. In Proceedings
of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages
343–351, Washington, DC, USA. IEEE Computer So-
ciety.
Moser, R., Sillitti, A., Abrahamsson, P., and Succi, G.
(2006). Does Refactoring Improve Reusability? In
Morisio, M., editor, Reuse of Off-the-Shelf Compo-
nents, volume 4039 of Lecture Notes in Computer Sci-
ence, pages 287–297. Springer Berlin Heidelberg.
Nair, T. G. and Selvarani, R. (2011). Defect Proneness
Estimation and Feedback Approach for Software De-
sign Quality Improvement. Information and Software
Technology, 54(3):274–285.
Olague, H., Etzkorn, L., Gholston, S., and Quattlebaum,
S. (2007). Empirical Validation of Three Software
Metrics Suites to Predict Fault-Proneness of Object-
Oriented Classes Developed Using Highly Iterative or
Agile Software Development Processes. IEEE Trans-
actions on Software Engineering, 33(6):402–419.
Olbrich, S., Cruzes, D. S., Basili, V., and Zazworka, N.
(2009). The Evolution and Impact of Code Smells:
A Case Study of Two Open Source Systems. In Pro-
ceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement,
ESEM ’09, pages 390–400.
Radjenovi, D., Heriko, M., Torkar, R., and Zivkovic, A.
(2013). Software Fault Prediction Metrics: A Sys-
tematic Literature Review. Information and Software
Technology, 55(8):1397–1418.
Shatnawi, R. (2010). A quantitative investigation of the ac-
ceptable risk levels of object-oriented metrics in open-
source systems. IEEE Transactions on Software En-
gineering, 36(2):216–225.
Shatnawi, R. and Li, W. (2008). The Effectiveness of Soft-
ware Metrics in Identifying Error-Prone Classes in
Post-Release Software Evolution Process. Journal of
Systems and Software, 81(11):1868–1882.
Singh, S. and Kahlon, K. (2011). Effectiveness of Encapsu-
lation and Object-Oriented Metrics to Refactor Code
and Identify Error Prone Classes using Bad Smells.
SIGSOFT Software Engineering Notes, 36(5):1–10.
Singh, S. and Kahlon, K. S. (2012). Effectiveness of Refac-
toring Metrics Model to Identify Smelly and Error
Prone Classes in Open Source Software. SIGSOFT
Software Engineering Notes, 37(2):1–11.
Stroggylos, K. and Spinellis, D. (2007). Refactoring – Does
It Improve Software Quality? In Fifth International
Workshop on Software Quality, 2007. WoSQ’07.
Subramanyam, R. and Krishnan, M. S. (2003). Empirical
Analysis of CK Metrics for Object-Oriented Design
Complexity: Implications for Software Defects. IEEE
Transactions on Software Engineering, 29(4):297–
310.
Wettel, R. and Lanza, M. (2007). Visualizing Software Sys-
tems as Cities. In 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007., pages 92–99.
Wirth, N. (2008). A Brief History of Software Engineering.
IEEE Annals of the History of Computing,, 30(3):32–
39.
Zhou, Y. and Leung, H. (2006). Empirical Analysis of
Object-Oriented Design Metrics for Predicting High
and Low Severity Faults. IEEE Transactions on Soft-
ware Engineering, 32(10):771–789.
Zhoua, Y., Xua, B., and Leung, H. (2010). On the Ability
of Complexity Metrics to Predict Fault-Prone Classes
in Object-Oriented Systems. Journal of Systems and
Software, 83(4):660–674.
ICEIS2014-16thInternationalConferenceonEnterpriseInformationSystems
248