REFERENCES
Castanon, CAB., Fraga, JS., Fernandez, S., Gruber, A.,
Costa, LF., 2007. Biological shape characterization
for automatic image recognition and diagnosis of
protozoan parasites of the genus Eimeria. Pat Recog
vol. 40, pp. 1899-1910.
Wang, X., Li, S., Liu, H., Wood, M., Chen, WR., Zheng,
B., 2008. Automated identification of analyzable
metaphase chromosomes depicted on microscopic
digital images. J Biomed Inf ., 41(2):264 71.
Cataldo, SD., Ficarra, E., Acquaviva, A., Mecii, E. 2010.
Achieving the way for automated segmentation of
nuclei in cancer tissue images through morphology-
based approach: a quantitative evaluation. Comp Med
Imag Graph.., 34(6):453 61.
Szilágyi, L., Szilágyi, S.M., Benyó, B., Benyó, Z., 2011.
Intensity inhomogeneity compensation and
segmentation of MR brain images using hybrid c-
means clustering models. Original Biomedical Signal
Processing and Control, Volume 6, Issue 1, 3-12.
Chaddad, A., Tanougast, C., Dandache, A., Bouridane, A.,
2011. Extracted Haralick’s Texture Features and
Morphological Parameters from Segmented
Multispectrale Texture Bio-Images for Classification
of Colon Cancer Cells. WSEAS Transaction on
Biology and Biomedicine Journal, Volume 8, Issue 2,
pp. 39-50.
Chaddad, A., et al., 2012. Evaluation of Different Shape
Parameters to Distinguish between Three Abnormally
Cancer Types of Cells. Journal of Computer Vision
and Image Processing, Vol.2, No.4, pp.17-28.
Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes:
active contour models. International Journal of
Computer Vision, vol. 1, no. 4, pp. 321–331.
Caselles, V., et al., 1993. A geometric model for active
contours in image processing. Numerische
Mathematik, vol. 66, no. 1, pp. 1–31.
Malladi, R., Sethian, JA., Vemuri, BC., 1995. Shape
modeling with front propagation: a level set
approach. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, no. 2, pp. 158–
175.
He, L., et al., 2008. A comparative study of deformable
contour methods on medical image segmentation.
Image and Vision Computing, vol. 26, no. 2, pp. 141–
163.
Chen, S. Y., Guan, Q., 2011. Parametric shape
representation by a deformable NURBS model for
cardiac functional measurements. IEEE Transactions
on Biomedical Engineering, vol. 58, no. 3 PART 1,
pp. 480–487.
Chen, S. Y., Yao, Al., 2012. Recent advances in
morphological cell image analysis. Computational
and Mathematical Methods in Medicine, vol.
2012(2012).
Canny, J., 1986. A Computational Approach to Edge
Detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol 8, No. 6, pp. 679-698.
Chaddad, A., Tanougast, C., Dandache, A., Bouridane, A.,
2011. Classification of Cancer Cells Based on
Morphological Features from Segmented
MultiSpectral Bio-Images. Recent Advances in
Applied & Biomedical Informatics and
Computational Engineering in Systems Applications,
August 23-26.
Chaddad, A., Maamoun, M., Tanougast, C., Dandache, A.,
2013. Hardware Implementation of Active Contour
Algorithm for Fast Cancer Cells Detection. IEEE
29th Southern Biomedical Engineering Conference,
May 3-5.
Sieler, L., Tanougast, C., Bouridane, A., 2010. A scalable
and embedded FPGA architecture for efficient
computation of Grey Level Co-occurrence Matrices
and Haralick textures features. Microprocess
Microsyst., 34:14–24.
Chaddad, A., Tanougast, C., Golato, A., Dandache, A.,
2013. Carcinoma cell identification via optical
microscopy and shape feature analysis. Journal of
Biomedical Science and Engineering, 6, pp. 1029-
1033.
BIODEVICES2014-InternationalConferenceonBiomedicalElectronicsandDevices
192