Dresner, H. (2003). Business activity monitoring: Bam
architecture. Gartner Symposium ITXPO (Cannes,
France).
Faerber, F., Cha, S. K., Primsch, J., Bornhoevd, C., Sigg, S.,
and Lehner, W. (2011). Sap hana database: data man-
agement for modern business applications. SIGMOD
Record, 40(4):45–51.
French, C. D. (1995). ”one size fits all” database architec-
tures do not work for dss. SIGMOD Rec., 24:449–450.
Gartner (2012). Pace-layered application strategy.
http://www.gartner.com/it-glossary/pace-layered-
application-strategy/. Accessed 2013-09-27.
Golfarelli, M., Rizzi, S., and Cella, I. (2004). Beyond data
warehousing: what’s next in business intelligence? In
DOLAP ’04: Proceedings of the 7th ACM interna-
tional workshop on Data warehousing and OLAP.
Grosse, P., Lehner, W., and May, N. (2013). Advanced ana-
lytics with the sap hana database. In DATA 2013.
Grund, M., Krueger, J., Plattner, H., Zeier, A., Cudre-
Mauroux, P., and Madden, S. (2010). Hyrise: a main
memory hybrid storage engine. Proc. VLDB Endow.,
4:105–116.
Haas, L. M., Freytag, J. C., Lohman, G. M., and Pirahesh,
H. (1989). Extensible query processing in starburst.
In SIGMOD Conference, pages 377–388. ACM Press.
Howard, S. (May 2002). Can you use one database model
for olap and oltp? DM Review.
Inmon, W. H. (1999). Building the Operational Data Store.
John Wiley & Sons, Inc., New York, NY, USA.
Jaecksch, B., Lehner, W., and Faerber, F. (2010). A plan
for olap. In EDBT, volume 426 of ACM International
Conference Proceeding Series, pages 681–686. ACM.
Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A.,
Zdonik, S. B., Jones, E. P. C., Madden, S., Stone-
braker, M., Zhang, Y., Hugg, J., and Abadi, D. J.
(2008). H-store: a high-performance, distributed
main memory transaction processing system. PVLDB,
1(2):1496–1499.
Kemper, A. and Neumann, T. (2011). Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In ICDE, pages 195–206.
IEEE Computer Society.
Krueger, J., Grund, M., Tinnefeld, C., Plattner, H., Zeier,
A., and Faerber, F. (2010a). Optimizing write perfor-
mance for read optimized databases. In DASFAA (2),
volume 5982, pages 291–305. Springer.
Krueger, J., Tinnefeld, C., Grund, M., Zeier, A., and Plat-
tner, H. (2010b). A case for online mixed workload
processing. DBTest ’10, pages 8:1–8:6, New York,
NY, USA. ACM.
Lahiri, T., Neimat, M.-A., and Folkman, S. (2013). Ora-
cle timesten: An in-memory database for enterprise
applications. IEEE Data Eng. Bull., 36(2):6–13.
Larson, P.-A., Zwilling, M., and Farlee, K. (2013). The
hekaton memory-optimized oltp engine. IEEE Data
Eng. Bull., 36(2):34–40.
Lindstroem, J., Raatikka, V., Ruuth, J., Soini, P., and
Vakkila, K. (2013). Ibm soliddb: In-memory database
optimized for extreme speed and availability. IEEE
Data Eng. Bull., 36(2):14–20.
MacNicol, R. and French, B. (2004). Sybase iq multiplex -
designed for analytics. In Proceedings of the Thirtieth
international conference on Very large data bases -
Volume 30, VLDB ’04.
Mangisengi, O. and Huynh, N. T. (2008). Towards a closed-
loop business intelligence framework. In ICEIS, pages
210–217.
Papantoniou, B., Nathanael, D., and Marmaras, N. (2003).
Moving target: designing for evolving practice. In
HCI International 2003.
Plattner, H. (2009). A common database approach for oltp
and olap using an in-memory column database. In
SIGMOD Conference, pages 1–2. ACM.
Plattner, H. (2013). A Course in In-Memory Data Manage-
ment: The Inner Mechanics of In-Memory Databases.
Rudolf, M., Paradies, M., Bornh
¨
ovd, C., and Lehner, W.
(2013). The Graph Story of the SAP HANA Database.
In BTW, pages 403–420.
Sadalage, P. and Fowler, M. (2012). NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot Persis-
tence. Addison Wesley Professional.
Seufert, A. and Schiefer, J. (2005). Enhanced business intel-
ligence - supporting business processes with real-time
business analytics. In DEXA Workshops, pages 919–
925. IEEE Computer Society.
Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey,
C., Rollins, E., Oancea, M., Littlefield, K., Menest-
rina, D., Ellner, S., Cieslewicz, J., Rae, I., Stancescu,
T., and Apte, H. (2013). F1: A distributed sql database
that scales. PVLDB, 6(11):1068–1079.
Sikka, V., F
¨
arber, F., Lehner, W., Cha, S. K., Peh, T., and
Bornh
¨
ovd, C. (2012). Efficient transaction processing
in sap hana database: the end of a column store myth.
In SIGMOD Conference, pages 731–742. ACM.
Simmonds, I. and Ing, D. (2000). A shearing layers ap-
proach to information systems development. Techni-
cal Report RC 21694, IBM Research.
Stonebraker, M. and C¸ etintemel, U. (2005). ”one size fits
all”: An idea whose time has come and gone. In Pro-
ceedings of the 21st International Conference on Data
Engineering, pages 2–11.
Stonebraker, M. and Weisberg, A. (2013). The voltdb main
memory dbms. IEEE Data Eng. Bull., 36(2):21–27.
Tinnefeld, C., Mueller, S., Zeier, A., and Plattner, H. (2011).
Available-to-promise on an in-memory column store.
In Datenbanksysteme in Business, Technologie und
Web (BTW 2011), Proceedings.
Truex, D. P., Baskerville, R., and Klein, H. K. (1999).
Growing systems in emergent organizations. Com-
mun. ACM, 42(8):117–123.
Watson, H. J. and Wixom, B. H. (2007). The current state
of business intelligence. Computer, 40(9):96–99.
ICEIS2014-16thInternationalConferenceonEnterpriseInformationSystems
418