Table 2: Qualitative analysis results.
Model Number of
parameters
Number of
phenomena
replicated
SLGK 11 82
GP 7 39
AMAN 16 38
SOCR 5 38
TD 11 10
LCT 1 16
PHK+ 5 5
MKM/APECS Unclear Not fixed
model’s processes in psychological terms. This
property, that Willis and Pothos call penetrability is
important, particularly in cases where computational
models are taken as psychological models by proxy
rather than as formal expressions of psychological
models (see, Alonso and Mondragón, 2012).
REFERENCES
Alonso, E., & Mondragón, E. (Eds.)(2011),
Computational Neuroscience for Advancing Artificial
Intelligence: Models, Methods and Applications,
Hershey, PA: IGI Global.
Alonso, E., & Mondragón, E. (2012), Uses, Abuses and
Misuses of Computational Models in Classical
Conditioning. In N. Rußwinkel, U. Drewitz & H. van
Rijn (Eds.), Proceedings 11th International
Conference on Cognitive Modeling (ICCM-12), pp.
96-100. Berlin, Germany: Universitaetsverlag der TU
Berlin.
Alonso, E., Mondragón, E., & Fernandez, A. (2012), A
Java simulator of Rescorla and Wagner's prediction
error model and configural cue extensions, Computer
Methods and Programs in Biomedicine, 108, 346-355.
Alonso, E., & Schmajuk, N. (2012), Computational
Models of Classical Conditioning guest editors’
introduction, Learning & Behavior, 40(3), 231-240.
Baum, W. M. (1983), Matching, Statistics, and Common
Sense, Journal of the Experimental Analysis of
Behavior, 39, 499- 501.
Dayan, P., & Abbott, L. F. (2001). Theoretical
Neuroscience: Computational and Mathematical
Modeling of Neural Systems. Cambridge, MA: MIT
Press.
Hall, G. (2002), Associative structures in Pavlovian and
instrumental conditioning. In H. Pashler, S. Yantis, D.
Medin, R. Gallistel an J. Wixted (Eds.), Stevens'
Handbook of Experimental Psychology, Volume 3, pp
1-45. Hoboken, NJ: John Wiley and Sons.
Haselgrove, M., & Hogarth, L. (2011), Clinical
Applications of Learning Theory. London, UK:
Psychology Press.
Mackintosh, N. J. (1994)(Ed.), Animal Learning and
Cognition, San Diego, CA: Academic Press.
Mondragón, E., Alonso, E., Fernandez, A., & Gray, J.
(2013a), A Rescorla and Wagner simulator with
context compounds, Computer Methods and Programs
in Biomedicine. DOI: 10.1016/j.cmpb.2013.01.016.
Mondragón, E., Gray, J., & Alonso, E. (2013b), A
Complete Serial Compound Temporal Difference
Simulator for Compound stimuli, Configural cues and
Context representation, Neuroinformatics. DOI:
10.1007/s12021-012-9172-z.
Pearce, J. M., & Bouton, M. E. (2001), Theories of
associative learning in animals. Annual Review of
Psychology, 52, 111-139.
Schachtman, T. R., & Reilly, S. (2011), Associative
Learning and Conditioning Theory: Human and Non-
Human Applications. Oxford, UK: Oxford University
Press.
Schmajuk, N. A. (1997), Animal Learning and Cognition:
A Neural Network Approach. Cambridge, UK:
Cambridge University Press.
Schmajuk, N. A. (2010a), Mechanisms in Classical
Conditioning: A Computational Approach.
Cambridge, UK: Cambridge University Press.
Schmajuk, N. A. (2010b)(Ed.), Computational Models of
Conditioning.
Cambridge, UK: Cambridge University
Press.
Schmajuk, N. A., & Alonso, E. (Eds.)(2012).
Computational Models of Classical Conditioning,
Learning & Behavior, 40(3).
Schultheis, H., Thorwart, A., & Lachnit., H. (2008a),
HMS: A MATLAB simulator of the Harris model of
associative learning, Behavior Research Methods, 40,
442-449.
Schultheis, H., Thorwart, A., & Lachnit, H. (2008b),
Rapid-REM: A MATLAB simulator of the replaced
elements model, Behavior Research Methods, 40, 435-
441.
Shanks, D.R. (1995), The Psychology of Associative
Learning. Cambridge, UK: Cambridge University
Press.
Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers,
E.-J. (2008), A survey of model evaluation approaches
with a tutorial on hierarchical Bayesian methods.
Cognitive Science, 32, 1248–1284.
Thorwart, A., Schultheis, H., König, S., & Lachnit, H.
(2009), ALTSim: A MATLAB simulator for current
associative learning theories, Behavior Research
Methods, 41(1), 29-34.
Vogel, E. H., Castro, M. E., & Saavedra, M. A. (2004),
Quantitative models of Pavlovian conditioning, Brain
Research Bulletin, 63, 173-202.
Wills, A.J. & Pothos, E.M. (2012a), On the adequacy of
current empirical evaluations of formal models of
categorization, Psychological Bulletin, 138, 102-125.
Wills, A. J. & Pothos, E. M. (2012b) On the adequacy of
Bayesian evaluations of categorization models: Reply
to Vanpaemel & Lee (2012), Psychological Bulletin,
138, 1259-1261.
ComputationalModelsofClassicalConditioning-AQualitativeEvaluationandComparison
547