Table 1: Performance results. It compares Oracle (the left part of table) with MongoDB (the right part of table) for all three
test cases defined in Section 5.1. The upper part of the table shows results when indexes were disabled, the bottom part when
indexes were enabled.
Oracle MongoDB
Without indexes
Test Case 1
Processes 1 2 4 8 16 32 1 2 4 8 16 32
avg(s) 15,749 29,373 59,722 131,443 244,95 320,111 6,899 7,612 8,24 13,42 25,863 52,082
op 100 200 400 800 1600 3200 100 200 400 800 1600 3200
op/s 6,35 6,809 6,698 6,086 6,532 9,997 14,495 26,273 48,544 59,615 61,865 61,442
avg 7,079 45,372
Test Case 2
avg(s) 17,984 32,422 57,652 128,311 220,652 131,534 9,891 10,121 10,557 18,618 36,827 74,206
op 100 200 400 800 1600 3200 100 200 400 800 1600 3200
op/s 5,561 6,169 6,938 6,235 7,251 24,328 10,111 19,761 37,888 42,969 43,446 43,123
avg 9,414 32,883
Test Case 3
avg(s) 72,404 143,456 286,598 387,175 323,436 514,247 23,946 45,673 80,695 163,815 373,29 753,373
op 100 200 400 800 1600 3200 100 200 400 800 1600 3200
op/s 1,381 1,394 1,396 2,066 4,947 6,223 4,176 4,379 4,957 4,884 4,286 4,248
avg 2,901 4,488
With indexes
Test Case 1
Processes 1 2 4 8 16 32 1 2 4 8 16 32
s 13,996 26,683 48,646 84,48 164,857 304,819 6,446 7,21 7,767 12,604 24,271 48,852
op 100 200 400 800 1600 3200 100 200 400 800 1600 3200
op/s 7,145 7,495 8,223 9,47 9,705 10,498 15,513 27,74 51,503 63,474 65,921 65,504
avg 8,756 48,276
Test Case 2
s 16,45 30,518 57,537 118,879 150,591 140,543 9,336 9,68 10,142 17,374 34,471 69,582
op 100 200 400 800 1600 3200 100 200 400 800 1600 3200
op/s 6,079 6,553 6,952 6,73 10,625 22,769 10,711 20,66 39,439 46,045 46,416 45,989
avg 9,951 34,877
Test Case 3
s 64,773 128,272 255,519 379,731 338,034 500,823 21,885 44,654 81,854 167,622 399,704 828,011
op 100 200 400 800 1600 3200 100 200 400 800 1600 3200
op/s 1,544 1,559 1,565 2,107 4,733 6,389 4,569 4,479 4,887 4,773 4,003 3,865
avg 2,983 4,429
system is ensured using Oracle database on backend.
Although this solution works quite satisfactorily, a us-
age of relational database makes difficult to store het-
erogeneous experimental data. This disadvantage is
solved using document-based databases. We tested
MongoDB and investigate possibilities to use it in-
stead of Oracle. Despite the advantages that this so-
lution brings, a lot of difficulties remain. The most
significant is the loss of data integrity together with a
need to duplicate data items. The second one is an ab-
sence of a unified API to access data (some solution
similar to Hibernate that ensures object-relational-
mapping for Java programs). Our future work in-
cludes two following goals: The data where its per-
sistence is strictly required will be exactly defined.
Next, a unified API that enables parallel data access
in a fixed schema database together with data access
in a schema free database will be provided.
ACKNOWLEDGEMENTS
This work was supported by the European Regional
Development Fund (ERDF), Project ”NTIS - New
Technologies for Information Society”, European
Centre of Excellence, CZ.1.05/1.1.00/02.0090.
REFERENCES
Bauer, C. and King, G. (2006). Java Persistence with Hi-
bernate. Manning, revised. edition.
Carreiras, C., Silva, H., Loureno, A., and Fred, A. L. N.
(2013). Storagebit - a metadata-aware, extensible, se-
mantic and hierarchical database for biosignals. In
Stacey, D., Sol-Casals, J., Fred, A. L. N., and Gamboa,
H., editors, HEALTHINF, pages 65–74. SciTePress.
Grewe, J., Wachtler, T., and Benda, J. (2011). A bottom-up
HEALTHINF2014-InternationalConferenceonHealthInformatics
426