ProRank+ - A Method for Detecting Protein Complexes in Protein Interaction Networks

Eileen Marie Hanna, Nazar Zaki

2014

Abstract

The course of developing effective medical treatments is typically based on the identification of disease-triggering protein complexes. In this paper, we present ProRank+, an effective method for detecting protein complexes in protein interaction networks. By assuming that complexes may overlap, the method uses a ranking algorithm to order proteins based on their importance in the network. In addition, a novel merging procedure is introduced to refine the predicted complexes in terms of their members. The experimental studies and results showed that ProRank+ outperforms several state-of-the-art methods in terms of the number of correctly-detected protein complexes using numerous quality measures.

References

  1. Adamcsek, B., Palla, G., Farkas, I. J., et al. 2006. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22:8, 1021-1023.
  2. Bader, G. D., and Hogue, C. W. V. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2.
  3. Brohée, S., and van Helden, J., 2006. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7:488.
  4. Bryan, K., and Leise, T. 2006. The $25,000,000,000 eigenvector: the linear algebra behind Google. SIAM Review 48:3, 569-581.
  5. Chua, H. N., Ning, K., Sung, W. K., et al. 2008. Using indirect protein-protein interactions for protein complex prediction. J. Bioinformatics and Computational Biology 6:3, 435-466.
  6. Collins, S. R., Kemmeren, P., Zhao, X. C., et al. 2007. Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Mol. Cell. Proteomics 6:3, 439-450.
  7. Dongen, S. 2000. Graph clustering by flow simulation [Ph.D. dissertation]. University of Utrecht, Amsterdam.
  8. Frey, B. J., and Dueck, D. 2007. Clustering by passing messages between data points. Science 315: 5814, 972-976.
  9. Gavin, A. C., Aloy, P., Grandi, P., et al. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631-636.
  10. Guimei, L., Wong, L., and Chua, H.N. 2009. Complex discovery from weighted PPI networks. Bioinformatics 25:15, 1891-1897.
  11. Hodgkin, J. 1998. Seven types of pleiotropy. Int. J. Dev. Biol. 42:3, 501-505.
  12. Hon, N. C., Sung, W. K., and Wong, L. 2006. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22:13, 1623-1630.
  13. Hong, E. L., Balakrishnan, R., Dong, Q., et al. 2008. Gene ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res. 36:suppl. 1, 577-581.
  14. Ishii, H., and Tempo, R. 2010. Distributed randomized algorithms for the Pagerank computation. IEEE Trans. Automatic Control 55:9, 1987-2000.
  15. King, A. D., Przulj, N., and Jurisica, I. 2004. Protein complex prediction via cost-based clustering. Bioinformatics 20:17, 3013-3020.
  16. Kopp, F., Dahlmann, B., and Kuehn, L. 2001. Reconstitution of hybrid proteasomes from purified pa700-20 S complexes and pa28alphabeta activator: ultrastructure and peptidase activities. J. Mol. Biol. 313:3, 465-471.
  17. Krogan, N. J., Cagney, G., Yu, H., et al. 2006. Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440, 637-643.
  18. Langville, A. N., and Meyer, C. D. 2006. Google's PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, USA.
  19. Liou, A. K., and Willison, K. R. 1997. Elucidation of the subunit orientation in cct (chaperonin containing tcp1) from the subunit composition of cct micro-complexes. EMBO J. 16, 4311-4316.
  20. Macropol, K., Can, T., and Singh, A. K. 2009. RRW: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics 10: 283.
  21. Mewes, H. W., Frishman, D., Gruber, C., et al. 2000. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28:1, 37-40.
  22. Mewes, H. W., Amid, C., Arnold, R., et al. 2004. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 32:suppl. 1, 41-44.
  23. Nakao, A., Yoshihama, M., and Kenmochi, N. 2004. Rpg: the ribosomal protein gene database. Nucleic Acids Res. 32:suppl. 1, D168-D170.
  24. Nepusz, T., Yu, H., and Paccanaro, A. 2012. Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods 9, 471-472.
  25. Przulj, N., Wigle, D. A., and Jurisica, I. 2004. Functional topology in a network of protein interactions. Bioinformatics 20:3, 340-348.
  26. Shain, A. H., and Pollack, J. R. 2013. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLosONE 8:1:e55119.
  27. Stark, C., Breitkreutz, B.J., Reguly, T., et al. 2006. BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 34:suppl. 1, D535-D539.
  28. Zaki, N. M., Berengueres, J., and Efimov, D. 2012(a). Detection of protein complexes using a protein ranking algorithm. Proteins: Structure, Function, and Bioinformatics 80:10, 2459-2468.
  29. Zaki, N. M., Berengueres, J., and Efimov, D. 2012(b). Prorank: A method for detecting protein complexes. Proceedings of the 14th international conference on Genetic and Evolutionary Computation Conference (GECCO 7812), 209-216.
Download


Paper Citation


in Harvard Style

Hanna E. and Zaki N. (2014). ProRank+ - A Method for Detecting Protein Complexes in Protein Interaction Networks . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 239-244. DOI: 10.5220/0004910802390244


in Bibtex Style

@conference{bioinformatics14,
author={Eileen Marie Hanna and Nazar Zaki},
title={ProRank+ - A Method for Detecting Protein Complexes in Protein Interaction Networks},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={239-244},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004910802390244},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - ProRank+ - A Method for Detecting Protein Complexes in Protein Interaction Networks
SN - 978-989-758-012-3
AU - Hanna E.
AU - Zaki N.
PY - 2014
SP - 239
EP - 244
DO - 10.5220/0004910802390244