REFERENCES
Akashi, H. (2003). Translational selection and yeast pro-
teome evolution. Genetics, 164:1291–1303.
Anderson, S. G. E. and Kurland, C. G. (1990). Codon
preferences in free-living microorganisms. Microbiol.
Rev., 54:198–210.
Bennetzen, J. L. and Hall, B. D. (1982). Codon selection in
yeast. J Biol Chem, 257(6):3026–3031.
Bła
˙
zej, P., Mackiewicz, P., and Cebrat, S. (2012). Simula-
tion of bacterial genome evolution under replicational
mutational pressures. In Proceedings of the BIOSTEC
2012, 5th International Joint Conference on Biomedi-
cal Engineering Systems and Technologies Bioinfor-
matics 2012, International Conference on Bioinfor-
matics Models, Methods and Algorithms, Vilamoura,
Algarve, Portugal, 1-4 February, pages 51–57.
Cebrat, S. and Dudek, M. (1998). The effect of DNA
phase structure on DNA walks. The European Phys-
ical Journal B-Condensed Matter and Complex Sys-
tems, 3(2):271–276.
Cebrat, S., Dudek, M. R., Gierlik, A., Kowalczuk, M., and
Mackiewicz, P. (1999). Effect of replication on the
third base of codons. Physica A, 265:78–84.
Cebrat, S., Dudek, M. R., and Mackiewicz, P. (1998). Se-
quence asymmetry as a parameter indicating coding
sequence in Saccharomyces cerevisiae genome. The-
ory in Biosciences, 117:78–89.
Cebrat, S., Dudek, M. R., Mackiewicz, P., Kowalczuk, M.,
and Fita, M. (1997a). Asymmetry of coding ver-
sus non-coding strands in coding sequences of differ-
ent genomes. Microbial & Comparative Genomics,
2:259–268.
Cebrat, S., Dudek, M. R., and Rogowska, A. (1997b).
Asymmetry in nucleotide composition of sense and
antisense strands as a parameter for discriminating
open reading frames as protein coding sequences. J.
Appl. Genet., 38:1–9.
Chib, S. and Greenberg, E. (1995). Understanding the
Metropolis-Hastings Algorithm. The American Statis-
tician, 49(4):327–335.
Das, S., Ghosh, S., Pan, A., and Dutta, C. (2005). Compo-
sitional variation in bacterial genes and proteins with
potential expression level. FEBS Letters, 579:5205–
5210.
Echols, H. and Goodman, M. F. (1991). Fidelity mech-
anisms in DNA replication. Annu Rev Biochem,
60:477–511.
Frank, A. and Lobry, J. (1999). Asymmetric substitution
patterns: a review of possible underlying mutational
or selective mechanisms. Gene, 238:65–77.
Freeman, J., Plasterer, T., Smith, T., and Mohr, S. (1998).
Patterns of genome organization in bacteria. Science,
279:1827.
Gutierrez, G., Marquez, L., and Martin, A. (1996). Pref-
erence for guanosine at first codon position in highly
expressed Escherichia coli genes. a relationship with
translation efficiency. Nucleic Acids Res., 24:2525–
2528.
Hanawalt, P. C. (1991). Heterogeneity of dna repair at
the gene level. Mutation Research/Fundamental and
Molecular Mechanisms of Mutagenesis, 247(2):203–
211.
Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of
the human-ape splitting by a molecular clock of mito-
chondrial dna. J Mol Evol, 22(2):160–174.
Hutchinson, F. (1996). Mutagenesis. In Neidhardt,
F. C., editor, Escherichia coli and Salmonella. Cel-
lular and molecular biology, pages 749–763. Asm.
Press, Washington D.C.
Ikemura, T. (1981). Correlation between the abundance of
Escherichia coli transfer RNAs and the occurrence of
the respective codons in its protein genes. J Mol Biol,
146(1):1–21.
Ikemura, T. (1985). Codon usage and tRNA content in uni-
cellular and multicellular organisms. Mol. Biol. Evol.,
2:1334.
Kanaya, S., Yamada, Y., Kudo, Y., and Ikemura, T. (1999).
Studies of codon usage and trna genes of 18 unicel-
lular organisms and quantification of Bacillus subtilis
trnas: gene expression level and species-specific di-
versity of codon usage based on multivariate analysis.
Gene, 238(1):143–155.
Karlin, S., Blaisdell, B. E., and Bucher, P. (1992). Quantile
distributions of amino acid usage in protein classes.
Protein Eng, 5(8):729–738.
Karlin, S. and Burge, C. (1995). Dinucleotide relative abun-
dance extremes: a genomic signature. Trends Genet,
11(7):283–290.
Karlin, S. and Mrazek, J. (1996). What drives codon choices
in human genes? J Mol Biol, 262(4):459–472.
Kowalczuk, M., Gierlik, A., Mackiewicz, P., Cebrat, S.,
and Dudek, M. (1999). Optimization of gene se-
quences under constant mutational pressure and selec-
tion. Physica A: Statistical Mechanics and its Appli-
cations, 273(1):116–131.
Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Now-
icka, A., Dudkiewicz, M., Dudek, M., and Cebrat,
S. (2001a). High correlation between the turnover of
nucleotides under mutational pressure and the DNA
composition. BMC Evol. Biol., 1:13.
Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka,
A., Dudkiewicz, M., Dudek, M. R., and Cebrat, S.
(2001b). DNA asymmetry and the replicational muta-
tional pressure. J. Appl. Genet., 42(4):553–577.
Kreutzer, D. A. and Essigmann, J. M. (1998). Oxidized,
deaminated cytosines are a source of C → T transi-
tions in vivo. Proc Natl Acad Sci U S A, 95(7):3578–
3582.
Lagunez-Otero, J. and Trifonov, E. N. (1992). mRNA pe-
riodocal infrastructure complementary to the proof-
reading site in the ribosome. J. Biomol. Struct. Dyn.,
10:455–464.
Lindahl, T. (1993). Instability and decay of the primary
structure of DNA. Nature, 362(6422):709–715.
Mackiewicz, P., Gierlik, A., Kowalczuk, M., Dudek, M.,
and Cebrat, S. (1999a). Asymmetry of nucleotide
composition of prokaryotic chromosomes. J. Appl.
Genet., 40:1–14.
Mackiewicz, P., Gierlik, A., Kowalczuk, M., Szczepanik,
D., Dudek, M., and Cebrat, S. (1999b). Mechanisms
StudiesofMutationAccumulationinThreeCodonPositionsusingMonteCarloSimulationsandMetropolis-Hastings
Algorithm
251