Subject 32 - Deep breathing - Filtered using Fourier analysis
cut-off
10 15 20 25 30 35 40 45 50 60 80 100 120 150 Hz
5 -0,05 0,32 0,65 0,77 0,86 0,85 0,82 0,83 0,83 0,83 0,83 0,83 0,83 0,83
10 0,64 0,83 0,86 0,89 0,85 0,81 0,81 0,81 0,81 0,81 0,81 0,81 0,81
15 0,48 0,63 0,72 0,66 0,58 0,58 0,58 0,62 0,59 0,58 0,57 0,58
20 0,47 0,52 0,46 0,44 0,46 0,48 0,49 0,49 0,49 0,49 0,49
25 0,12 0,35 0,34 0,37 0,37 0,35 0,38 0,38 0,39 0,39
30 0,28 0,22 0,3 0,4 0,45 0,44 0,44 0,44 0,45
35 0,43 0,53 0,6 0,65 0,69 0,69 0,7 0,7
40 0,44 0,46 0,51 0,61 0,6 0,6 0,6
45 0,29 0,39 0,39 0,38 0,38 0,37
50 0,45 0,45 0,44 0,43 0,45
Hz
Subject 55 - Deep breathing - Filtered using Fourier analysis
cut-off 10 15 20 25 30 35 40 45 50 60 80 100 120 150 Hz
5 0,07 0,17 0,12 0,13 0,13 0,09 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06
10 0,13 0,19 0,21 0,14 0,29 0,42 0,45 0,46 0,46 0,46 0,46 0,46 0,46
15 0,44 0,07 0,44 0,54 0,59 0,6 0,61 0,62 0,61 0,61 0,61 0,61
20 0,39 0,5 0,59 0,64 0,64 0,63 0,64 0,64 0,64 0,64 0,64
25 0,45 0,56 0,62 0,61 0,61 0,62 0,61 0,61 0,62 0,61
30 0,45 0,54 0,54 0,53 0,52 0,52 0,53 0,53 0,53
35 0,35 0,43 0,37 0,24 0,24 0,24 0,24 0,23
40 0,18 0,12 0,14 0,24 0,22 0,22 0,21
45 0,16 0,24 0,23 0,22 0,22 0,22
50 0,19 0,19 0,2 0,21 0,22
Hz
Wavelet filter, deep breathing Wavelet filter, deep breathing
Subject 32 Subject 55
level
5 4 3 2 1 level 5 4 3 2 1
5
0,02 0,77 0,87 0,87 0,87
5
0,21 0,2 0,22 0,22 0,22
4
0,77 0,85 0,85 0,85
4
0,26 0,22 0,23 0,23
3
0,21 0,26 0,26
3
0,61 0,64 0,64
2
0,41 0,45
2
0,15 0,15
Figure 4: Numbers in the tables represent correlations between R-S1 function and respiration of volunteers number 32 and
55 after heart sound was filtered with a band-pass filter using Fourier analysis with low cut-off frequency from first column
and high cut-off frequency from first row in upper two tables. Lower two tables represent the same correlations after
summing wavelet detail levels ranging from the lowest detail from first column to highest detail from first row.
combinations can be seen in the lower part of Figure
4. For example, the sum of details 5, 4, 3 used for
signal reconstruction are located in row marked with
5 in the table representing the highest detail, and
column marked with 3, representing the lowest
detail used in the sum. Another example, single
detail 2 used for reconstruction, is in row 2 (highest
detail) and in column 2 (the lowest detail of the
sum). After the signal had been filtered, an envelope
was computed using a normalized average Shannon
energy detection algorithm (NASA) (3),
1
|
|
log
|
|
(3)
The envelope of heart sound can be seen as the first
curve in the upper part of Figure 2 and the very
bottom curve in the lower part of Figure 2. The
second one is significantly squeezed, which can be
observed on the x-axis representing time. Next, in
interval starting from R-wave to the R-wave + 20 %
of the R-R distance, abbreviated <R, 0.2R-R>, the
centre of gravity was computed. Computation of the
gravity centre is depicted in Figure 2, the first curve
in the upper part of the figure. Integrals of the
envelope were computed from the left and right side
of the interval <R, 0.2R-R>. Particular integrals are
also depicted in the same place as the envelope with
the blue and green colour. The point at which these
integrals have the same value was found. This point
was declared the centre of gravity and was also S1.
We assume that if S1 was detected correctly then
it should correlate with respiration. For every R-R
interval we computed the mean value of the
FirstHeartSoundDetectionMethods-AComparisonofWaveletTransformandFourierAnalysisinDifferentFrequency
Bands
281