REFERENCES
Aizen, E. and Zlotver, E. (2013). Prediction of falls in reha-
bilitation and acute care geriatric setting. Journal of
Clinical Gerontology and Geriatrics.
Bongue, B., Dupr, C., Beauchet, O., Rossat, A., Fantino,
B., and Colvez, A. (2011). A screening tool with five
risk factors was developed for fall-risk prediction in
community-dwelling elderly. Journal of Clinical Epi-
demiology, 64(10):1152–1160.
Cuaya, G., Mu
˜
noz Mel
´
endez, A., N
´
u
˜
nez Carrera, L.,
Morales, E. F., Qui
˜
nones, I., P
´
erez, A. I., and Alessi,
A. (2013). A dynamic bayesian network for estimat-
ing the risk of falls from real gait data. Medical &
Biological Engineering & Computing, 51(1-2):29–37.
Deandrea, S., Lucenteforte, E., Bravi, F., Foschi, R.,
La Vecchia, C., and Negri, E. (2010). Risk factors for
falls in community-dwelling older people. Epidemiol-
ogy, 21(5):658–668.
Demura, S., Sato, S., Shin, S., and Uchiyama, M. (2012).
Setting the criterion for fall risk screening for healthy
community-dwelling elderly. Archives of Gerontology
and Geriatrics, 54(2):370–373.
Espinoza, M. S. (2013). Wearable fall prediction system:
Preliminary considerations. Technical report, Faculty
of Engineering, University of Porto (FEUP), Portugal.
Feil, M. and Gardner, L. A. (2012). Falls risk assessment:
A foundational element of falls prevention programs.
Pennsylvania Patient Safety Advisory, 9(3):73–81.
Fong, K. N., Siu, A. M., Yeung, K. A., Cheung, S. W.,
and Chan, C. C. (2011). Falls among the community-
living elderly people in hong kong: A retrospective
study. Hong Kong Journal of Occupational Therapy,
21(1):33–40.
Gama, A. and G
´
omez, A. (2008). Factores de riesgo de
ca
´
ıdas en ancianos: revisi
´
on sistem
´
atica. Revista de
Sa
´
ude P
´
ublica, 42(5):946–956.
Giansanti, D., Maccioni, G., Cesinaro, S., Benvenuti, F.,
and Macellari, V. (2008a). Assessment of fall-risk
by means of a neural network based on parameters
assessed by a wearable device during posturography.
Medical Engineering & Physics, 30(3):367–372.
Giansanti, D., Macellari, V., and Maccioni, G. (2008b).
New neural network classifier of fall-risk based on
the mahalanobis distance and kinematic parameters
assessed by a wearable device. Physiological Mea-
surement, 29(3):N11–N19.
Gietzelt, M., Nemitz, G., Wolf, K.-H., Schwabedissen, H.
M. Z., Haux, R., and Marschollek, M. (2009). A clin-
ical study to assess fall risk using a single waist ac-
celerometer. Informatics for Health and Social Care,
34(4).
Greene, B. R., Donovan, A. O., Romero-Ortuno, R., Cogan,
L., Ni Scanaill, C., and Kenny, R. A. (2010). Quanti-
tative falls risk assessment using the timed up and go
test. IEEE Transactions on Biomedical Engineering,
57(12):2918–2926.
Grundstrom, A. C., Guse, C. E., and Layde, P. M. (2012).
Risk factors for falls and fall-related injuries in adults
85 years of age and older. Archives of Gerontology
and Geriatrics, 54(3):421–428.
Heinrich, S., Rapp, K., Rissmann, U., Becker, C., and
K
¨
onig, H.-H. (2010). Cost of falls in old age:
a systematic review. Osteoporosis International,
21(6):891–902.
Karlsson, M. K., Ribom, E., Nilsson, J.-r., Ljunggren,
¨
O.,
Ohlsson, C., Mellstr
¨
om, D., Lorentzon, M., Mallmin,
H., Stefanick, M., Lapidus, J., Leung, P. C., Kwok, A.,
Barrett-Connor, E., Orwoll, E., and Rosengren, B. E.
(2012). Inferior physical performance tests in 10,998
men in the MrOS study is associated with recurrent
falls. Age and Ageing.
Kinematix (2013). WalkinSense User’s Manual. Porto, Por-
tugal. www.kinematix.pt.
Lafargue, G., Nol, M., and Luyat, M. (2013). In the el-
derly, failure to update internal models leads to over-
optimistic predictions about upcoming actions. PLoS
ONE, 8(1):e51218.
Lai, D. T., Begg, R. K., Taylor, S., and Palaniswami, M.
(2008). Detection of tripping gait patterns in the el-
derly using autoregressive features and support vec-
tor machines. Journal of Biomechanics, 41(8):1762–
1772.
Liu, Y., Redmond, S., Wang, N., Blumenkron, F.,
Narayanan, M., and Lovell, N. (2011). Spectral
analysis of accelerometry signals from a directed-
routine for falls-risk estimation. IEEE Transactions
on Biomedical Engineering, 58(8):2308–2315.
Lord, S. R., Tiedemann, A., Chapman, K., Munro, B., Mur-
ray, S. M., Gerontology, M., Ther, G. R., and Sher-
rington, C. (2005). The effect of an individualized fall
prevention program on fall risk and falls in older peo-
ple: A randomized, controlled trial. Journal of the
American Geriatrics Society, 53(8):12961304.
Marschollek, M., Nemitz, G., Gietzelt, M., Wolf, K. H.,
Schwabedissen, H. M. z., and Haux, R. (2009). Pre-
dicting in-patient falls in a geriatric clinic. Zeitschrift
fr Gerontologie und Geriatrie, 42(4):317–322.
Marschollek, M., Wolf, K.-H., Gietzelt, M., Nemitz, G.,
Meyer zu Schwabedissen, H., and Haux, R. (2008).
Assessing elderly persons’ fall risk using spectral
analysis on accelerometric data — a clinical evalua-
tion study. In 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology So-
ciety (EMBS), 2008., pages 3682–3685.
McGrath, D., Doheny, E., Walsh, L., McKeown, D., Cun-
ningham, C., Crosby, L., Kenny, R., Stergiou, N.,
Caulfield, B., and Greene, B. (2012). Taking balance
measurement out of the laboratory and into the home:
Discriminatory capability of novel centre of pressure
measurement in fallers and non-fallers. In 2012 An-
nual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pages
3296–3299.
Menz, H. B., Lord, S. R., and Fitzpatrick, R. C. (2003). Ac-
celeration patterns of the head and pelvis when walk-
ing on level and irregular surfaces. Gait & Posture,
18(1):35–46.
Muir, S., Berg, K., Chesworth, B., Klar, N., and Speech-
ley, M. (2010). Application of a fall screening algo-
rithm stratified fall risk but missed preventive opportu-
nities in community-dwelling older adults: A prospec-
BIOSIGNALS2014-InternationalConferenceonBio-inspiredSystemsandSignalProcessing
74