5 CONCLUSIONS
In this study we explore ways to select appropriate
candidate SNP-SNP pairs for GWAS studies (for ana-
lyzing interacting SNPs), based on biological knowl-
edge. We also calculate the reduction in computa-
tional complexity that can be obtained after such pre-
filtering step. As can be seen on the contrasting ex-
amples of direct PPI and pathway membership data,
the reduction achieved by filtering is less significant
for pathway data with a wider pathway membership
compared to the more restrictive pairwise interaction.
The difference in this specific example is 10-fold. The
filtering would be even more selective in the case of
SNP triples or quadruples. This computational exer-
cise is discussed in the context of the problem of so-
called ”lost heredity” and the need to analyze possible
interactions between SNPs and their association with
certain phenotypes in GWAS analysis.
ACKNOWLEDGEMENTS
Financial support provided by the EU 7th Frame-
work Project ”THALAssaemia MOdular Stratifi-
cation System for Personalized Therapy THALA-
MOSS” (FP7-HEALTH-2012-INNOVATION-1 Col-
laborative Project; http://thalamoss.eu/index.html).
REFERENCES
Bush, W., Dudek, S., and Ritchie, M. (2009). Biofilter:
a knowledge-integration system for the multi-locus
analysis of genome-wide association studies. In Pa-
cific Symposium on Biocomputing, volume 14, pages
368–379.
Emily, M., Mailund, T., Hein, J., Schauser, L., and
Schierup, M. (2009). Using biological networks to
search for interacting loci in genome-wide association
studies. Eur J Hum Genet, 17:1231–1240.
Feizi, S., Marbach, D., Mdard, M., and Kellis, M. (2013).
Network deconvolution as a general method to dis-
tinguish direct dependencies in networks. Nature
Biotechnology, 31:726–733.
Hindorff, L., Sethupathy, P., Junkins, H., Ramos, E., Mehta,
J., Collins, F., and Manolio, T. (2009). Potential etio-
logic and functional implications of genome-wide as-
sociation loci for human diseases and traits. Proc Natl
Acad Sci USA, (May 27).
Hua, L., Lin, H., Li, D., Li, L., and Liu, Z. (2012). Min-
ing functional gene modules linked with rheumatoid
arthritis using a snp-snp network. Genomics, Pro-
teomics & Bioinformatics, 10(1):23–34.
Huh, I.-S., Sohee-Oh, and Park, T. (2011). A chi-square
test for detecting multiple joint genetic variants in
genome-wide association studies. In IEEE Interna-
tional Conference on Bioinformatics and Biomedicine
Workshop, pages 708–713.
Karolchik, D., Hinrichs, A., Furey, T., Roskin, K., Sugnet,
C., Haussler, D., and Kent, W. (2004). The ucsc ta-
ble browser data retrieval tool. Nucleic Acids Res.,
32:D493–D496.
Kelder, T., Van Iersel, M., Hanspers, K., Kutmon, M., Con-
klin, B., Evelo, C., and Pico, A. (2012). Wikipath-
ways: building research communities on biological
pathways. Nucleic Acids Res., 40:D1301–D1307.
Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli,
M., Galeota, E., Sacco, F., Palma, A., Nardozza, A.,
Santonico, E., Castagnoli, L., and Cesareni, G. (2012).
Mint, the molecular interaction database: 2012 up-
date. Nucleic Acids Res., 40:D857D861.
Liu, Y., Zhou, J., Liu, Z., Chen, L., and Ng, M. (2012). Con-
struction and analysis of genome-wide snp networks.
In IEEE 6th International Conference on Systems Bi-
ology (ISB).
Maher, B. (2008). Personal genomes: The case of the miss-
ing heritability. Nature, 456:18–21.
Manolio, T., Collins, F., and Cox, N. e. a. (2009). Finding
the missing heritability of complex diseases. Nature,
461(7265):747–753.
Mantel, N. and Haenzel, W. (1959). Statistical aspect of the
analysis of data from retrospective studies of disease.
J.Natl.Cancer Inst, 22:719–748.
Quinlan, A. and Hall, I. (2010). Bedtools: a flexible suite
of utilities for comparing genomic features. Bioinfor-
matics, 26(6):841–842.
Salwinski, L., Miller, C., Smith, A., Pettit, F., Bowie, J.,
and Eisenberg, D. (2004). The database of interact-
ing proteins: 2004 update. Nucleic Acids Research,
32(90001):D449–D451.
Sherry, S., Ward, M., Kholodov, M., Baker, J., Phan, L.,
Smigielski, E., and Sirotkin, K. (2001). dbsnp: the
ncbi database of genetic variation. Nucleic Acids Res.,
29(1):308–311.
Slavin, T., Feng, T., Schnell, A., Zhu, X., and Elston, R.
(2011). Two-marker association tests yield new dis-
ease associations for coronary artery disease and hy-
pertension. Hum Genet, 130:725–733.
Thorisson, G., Lancaster, O., Free, R., Hastings, R.,
Sarmah, P., Dash, D., Brahmachari, S., and Brookes,
A. (2009). Hgvbaseg2p: a central genetic association
database. Nucleic Acids Research, 37:D797–802.
van Steen, K. (2011). Traveling the world of gene-gene
interactions. Briefings in Bioinformatics, 13(1):1–19.
Witte, J. (2010). Genome-wide association studies and be-
yond. Annu. Rev. Public Health, 31:9–20.
BIOINFORMATICS2014-InternationalConferenceonBioinformaticsModels,MethodsandAlgorithms
264