a one-class SVM for geographic object based novelty
detection. In Proceedings of the first AfricaGeo
conference. Cape Town, South Africa: p. 1-25.
Hayashi-Kurahashi, N., Kidokoro, H., Kubota, T. et al.,
2012. EEG for predicting early neurodevelopment in
preterm infants: an observational cohort study. In
Pediatrics, 130: p.891-897.
Hellström-Westas, L., Klette, H., Thorngren-Jerneck, K.,
et al., 2001. Early prediction of outcome with aEEG in
preterm infants with large intraventricular
hemorrhages. In Neuropediatrics, 32: p. 319-324.
Hellström-Westas, L. and Rosén I., 2005.
Electroencephalography and brain damage in preterm
infants. In Early Human Development, 81: p. 255-261.
Holmes, G. and Lombroso, T., 1993. Prognostic value of
background Patterns in the neonatal EEG. In Journal
of Clinical Neurophysiology, p. 323-352.
Hunyadi, B., De Vos, M., Signoretto, M., et al., 2011.
Automatic Seizure Detection Incorporating Structural
Information. In Artificial Neural Networks and
Machine Learning–ICANN, 6791: p. 233–240.
Hunyadi, B., De Vos, M., Van Paesschen, W., et al., 2010.
A mimicking approach for human epileptic seizure
detection. In Proc. of the International Biosignal
Processing Conference. Berlin, Germany: p. 1-4.
Koolen, N., Jansen, K., Vervisch, J., et al., 2013.
Automatic burst detection based on line length in the
premature EEG. In Proc. of the 6
th
International
Conference on bio-inspired systems and signal
processing (BIOSIGNALS). Barcelona, Spain: p. 105-
111.
Le Bihannic, A., Beauvais, K., Busnel, A., et al., 2012.
Prognostic value of EEG in very premature newborns.
In Arch Dis Child Fetal Neonatal, 97: p.106-109.
Okumura, A., Hayakawa, F., Kato, T., et al., 2002.
Developmental outcome and types of chronic-stage
EEG abnormalities in preterm infants. In
Developmental Medicine and Child Neurology, 44: p.
729-734.
Palmu, K., Wikström, S., Hippeläinen, E., et al., 2010.
Detection of ‘EEG bursts’ in the early preterm EEG:
Visual vs. automated detection. In Clinical
Neurophysiology, 121: p. 1015-1022.
Schölkopf, B., Smola, A. J., Williamson, R. C., et al.,
2000. New Support Vector Algorithms. In Neural
Computation, 12: p. 1207-1245.
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al., 2001.
Estimating the Support of a High-Dimensional
Distribution. In Neural Computation, 13: p. 1443-
1471.
Smyser, C. D., Inder, T. E., Shimony, J.S., et al., 2010.
Longitudinal analysis of neural network development
in preterm infants. In Cerebral cortex, 20: p. 2852-
2862.
Vanhatalo, S. and Kaila, K., 2006. Development of
neonatal EEG activity: from phenomenology to
physiology. In Seminars in fetal & neonatal medicine,
11: p. 471-478.
Van Putten, M. and Tavy, D., 2004. Continuous
Quantitative EEG Monitoring in Hemispheric Stroke
Patients Using the Brain Symmetry index. In Stroke,
35: p. 2489-2492.
Vecchierini, M. F., André, M., d’Allest, A. M., et al.,
2007. Normal EEG of premature infants born between
24 and 30 weeks gestational age: Terminology
definitions and maturation aspects. In Clinical
Neurophysiology, 37: p.311-323.
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
770