with phase corrected flow values and the
visualization tools are available at
https://github.com/psarkozy/sffviz.
7 FURTHER WORK
The reported findings allow the refinements of
existing generative flowgram based models, to
improve the quality of sequencing measurements.
We are evaluating models that take into account the
position in the flow cycle and the distances to
previous and next identical bases in the flow cycle,
to allow for the correction of the flow signal
distributions, and to enable the reduction of
homopolymer insertions and deletions.
ACKNOWLEDGEMENTS
The publication was supported by the TÁMOP-
4.2.2.C-11/1/KONV-2012-0001 project. The project
has been supported by the European Union, co-
financed by the European Social Fund. This research
was partially supported by the ARTEMIS JU and the
Hungarian National Development Agency (NFÜ) in
frame of the R3-COP (Robust & Safe Mobile Co-
operative Systems) project. The research was also
partially supported by OTKA 81466, OTKA 81941,
OTKA 83766, and GOP-1.1.1-11-2012-0030.
REFERENCES
Rothberg, JM., Hinz, W., Rearick, TM., Schultz, J.,
Mileski, W., 2011. An integrated semiconductor
device enabling non-optical genome sequencing.
Nature 475: 348–352.
Metzker, ML., 2010. Sequencing technologies - the next
generation. Nature Reviews Genetics,11:31-46.
Quail, MA., Smith, M., Coupland, P., Otto, TD., Harris,
SR., Connor, TR., Bertoni, A., Swerdlow, HP., Gu,Y.,
2012. A tale of three next generation sequencing
platforms: comparison of Ion Torrent, Pacific
Biosciences and Illumina MiSeq sequencers. BMC
Genomics 2012. 13:341.
Margulies, M., Egholm, M., Altman, WE., Attiya, S.,
Bader, JS., Bemben, LA., Berka, J., Braverman, MS.,
Chen, YJ., Chen, Z., Dewell, SB., Du, L., Fierro, JM.,
Gomes, XV., Godwin, BC., He, W., Helgesen, S., Ho,
CH., Irzyk, GP., Jando, SC., Alenquer, ML., Jarvie,
TP., Jirage, KB., Kim, JB., Knight, JR., Lanza, JR.,
Leamon, JH., Lefkowitz, SM., Lei, M., Li, J., Lohman,
KL., Lu, H., Makhijani, VB., McDade, KE.,
McKenna, MP., Myers, EW., Nickerson, E., Nobile,
JR., Plant, R., Puc, BP., Ronan, MT., Roth, GT.,
Sarkis, GJ., Simons, JF., Simpson, JW., Srinivasan,
M., Tartaro, KR., Tomasz, A., Vogt, KA., Volkmer,
GA., Wang, SH., Wang, Y., Weiner, MP., Yu, P.,
Begley, RF., Rothberg, JM., 2005. Genome
sequencing in microfabricated high-density picolitre
reactors. Nature. 2005,437:376-80.
Vacic, V., Jin, H., Zhu, JK., Lonardi, S., 2008. A
probabilistic method for small RNA flowgram
matching. Pacific Symposium on Biocomputing
2008:75-86.
Quince, C., Lanzén, A., Curtis, TP., Davenport, RJ., Hall,
N., Head, IM., Read, LF., Sloan, WT., 2009. Accurate
determination of microbial diversity from 454
pyrosequencing data. Nat Methods. 2009,9:639-41.
Quinlan, AR., Stewart, DA., Strömberg, MP., Marth, GT.,
2008. Pyrobayes: an improved base caller for SNP
discovery in pyrosequences. Nature Methods.
2008,5:179 – 18.
Zeng, F., Jiang, R., Chen, T., 2013. PyroHMMsnp: an
SNP caller for Ion Torrent and 454 sequencing data.
Nucleic Acids Research, 2013 Jul;41(13):
Langmead, B., Salzberg, S., 2012. Fast gapped-read
alignment with Bowtie 2. Nature Methods. 2012,
9:357-359.
Balzer, S., Malde, K., Lanzén, A., Sharma, A., Jonassen,
I., 2010. Characteristics of 454 pyrosequencing data—
enabling realistic simulation with flowsim.
Bioinformatics. 2010. 26(18):i420-i425.
Bragg, LM., Stone, G., Butler, MK., Hugenholtz, P.,
Tyson, GW., 2013. Shining a Light on Dark
Sequencing: Characterising Errors in Ion Torrent
PGM Data. PLoS Comput Biol 9(4): e1003031.
FlowIndexbasedCharacterizationofnextGenerationSequencingErrors-VisualizingPyrosequencingandSemiconductor
SequencingtoCopewithHomopolymerErrors
277