selection and k-means. In: Proc. of the 6th Brazilian
Symposium on Neural Networks, pp. 162–167.
Chen, J., Zhang, C., Xue, X., Liu, C.-H., 2013. Fast
instance selection for speeding up support vector
machines. Knowledge-Based Systems, vol. 45, pp. 1-7.
Chen, J., Liu, C.-L., 2011. Fast multi-class sample
reduction for speeding up support vector machines.
Proceedings of the IEEE International Workshop on
Machine Learning for Signal Processing, Beijing,
China, September 18-21.
Chen, J., Chen, C., 2002. Speeding up SVM decisions
based on mirror points. Proc. 6
th
International Conf.
Pattern Recognition, vol. 2, pp. 869-872.
Devroye, L., 1981. On the inequality of Cover and Hart in
nearest neighbour discrimination. IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 3, pp. 75–78.
Hart, P. E., 1968. The condensed nearest neighbour rule.
IEEE Trans. Infor. Theory, vol. 14, pp. 515–516.
Kawulok, M., Nalepa, J., 2012. Support vector machines
training data selection using a genetic algorithm. In
G.L. Gimel’farb et al. (Eds.): Structural, Syntactic,
and Statistical Pattern Recognition, LNCS 7626, pp.
557–565.
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., Murthy,
K. R. K., 2001. Improvements to Platt’s SMO
algorithm for SVM classifier design. Neural
Computation, vol. 13, pp. 637-649.
Lee, Y. L., Mangasarian, O. L., 2001. RSVM: Reduced
support vector machines. In Proceedings of the First
SIAM International Conference on Data Mining,
SIAM, Chicago, April 5-7, (CD-ROM).
Li, X., Cervantes, J., Yu, W., 2012. Fast classification for
large datasets via random selection clustering and
Support Vector Machines. Intelligent Data Analysis,
vol. 16, pp. 897-914.
Liu, X., Beltran, J. F., Mohanchandra, N., Toussaint, G.
T., 2013. On speeding up support vector machines:
Proximity graphs versus random sampling for pre-
selection condensation. Proc. International Conf.
Computer Science and Mathematics, Dubai, United
Arab Emirates, Jan. 30-31, Vol. 73, pp. 1037-1044.
Ng W. Q., Dash, M., 2006. An evaluation of progressive
sampling for imbalanced datasets. In Sixth IEEE
International Conference on Data Mining Workshops,
Hong Kong, China. 2006.
Panda, N., Chang, E. Y., Wu, G., 2006. Concept boundary
detection for speeding up SVMs. Proc. 23
International Conf. on Machine Learning, Pittsburgh.
Platt, J. C., 1998. Fast training of support vector machines
using sequential minimial optimization. In Advances
in Kernel Methods: Support Vector Machines, B.
Scholkopf, C. Burges, and A. Smola, Eds., MIT Press.
Portet, F., Gao, F., Hunter, J., Quiniou, R., 2007.
Reduction of large training set by guided progressive
sampling: Application to neonatal intensive care data.
Proc. of Intelligent Data Analysis in Biomedicine and
Pharmacology, Amsterdam, pp. 43-44 .
Provost, F., Jensen, D., Oates, T., 1999. Efficient
progressive sampling. In Fifth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Diego, USA, 1999.
Sriperumbudur, B. K., Lanckriet, G., 2007. Nearest
neighbour prototyping for sparse and scalable support
vector machines. Technical Report No. CAL-2007-02,
University of California San Diego.
Toussaint, G. T., Berzan, C., 2012. Proximity-graph
instance-based learning, support vector machines, and
high dimensionality: An empirical comparison.
Proceedings of the Eighth International Conference
on Machine Learning and Data Mining, July 16-19,
2012, Berlin, Germany. P. Perner (Ed.): LNAI 7376,
pp. 222–236, Springer-Verlag Berlin Heidelberg.
Toussaint, G. T., 2005. Geometric proximity graphs for
improving nearest neighbour methods in instance-
based learning and data mining. International J.
Computational Geometry and Applications, vol. 15,
April, pp. 101-150.
Toussaint, G. T., 1974. Bibliography on estimation of
misclassification. IEEE Transactions on Information
Theory, vol. 20, pp. 472-479.
Vapnik, V., 1995. The Nature of Statistical Learning
Theory, Springer-Verlag, New York, NY.
Wang, Y., Zhou, C. G., Huang, Y. X., Liang, Y. C., Yang,
X. W., 2006. A boundary method to speed up training
support vector machines. In: G. R. Liu et al. (eds),
Computational Methods, Springer, Printed in the
Netherlands, pp. 1209–1213.
Wilson, D. L., 1973. Asymptotic properties of nearest
neighbour rules using edited-data. IEEE Trans.
Systems, Man, and Cybernetics, vol. 2, pp. 408–421.
Witten, I., Frank, E., 2000. WEKA: Machine Learning
Algorithms in Java. In Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations, Morgan Kaufmann, pp. 265-320.
SpeedingupSupportVectorMachines-ProbabilisticversusNearestNeighbourMethodsforCondensingTrainingData
371