Cottrell, G. and Metclafe, J. (1990). Empath: face, emotion,
and gender recognition using holons. Proc. of Adv. in
NIPS, 3:567–571.
Freund, Y. and Schapire, H. (1996). Experiments with a new
boosting algorithm. In Int. Conf. on Machine Learn-
ing, pages 148–156.
Fu, Y., Guo, G., and Huang, T. (2010). Age synthesis and
estimation via faces: A survey. IEEE Trans. on PAMI,
32(11):1955–1976.
Gao, F. and Ai, H. (2009). Face age classification on
consumer images with gabor feature and fuzzy lda
method. LNCS, 5558:132–141.
Golomb, B., Lawrence, D., and Sejnowski, T. (1991).
Sexnet, a neural network identifies sex from human
faces. NIPS, 3.
Guo, G., Mu, G., Dyer, D., and T.S., H. (2009a). A study
on automatic age estimation using a large database.
ICCV, pages 1986–1991.
Guo, G., Mu, G., Fu, Y., and Huang, T. (2009b). Human age
estimation using bio inspired features. CVPR, pages
112–119.
Hadid, A. and M., P. (2008). Combining motion and appear-
ance for gender classification from video sequences.
ICPR, pages 1–4.
Han, H., Otto, C., and Jain, A. (2013). Age estimation from
face images: Human vs. machine performance. In
Proc. ICB, pages 4–7.
Huang, G., Ramesh, M., Berg, T., and Learned-Miller, E.
(2007). Labeled faces in the wild: A database for
studying face recognition in unconstrained environ-
ments. Uni. of Massachusetts, Tech. Report 07-49.
Kumar, N., Belhumeur, P., and Nayar, S. (2008). Facetracer:
A search engine for large collections of images with
faces. ECCV, pages 340–353.
Lanitis, A., Draganova, C., and Christodoulou, C. (2004).
Comparing different classiers for automatic age esti-
mation. IEEE Trans. on SMC-B, 34(1):621–628.
Li, X., Maybank, S., Yan, S., Tao, D., and D., X.
(2008). Gait components and their application to gen-
der recognition. IEEE Trans. on SMC-C, 38(2):145–
155.
Liao, S., Zhu, X., Lei, Z., Zhang, L., and Li, S. (2007).
Learning multi-scale block local binary patterns for
face recognition. ICB, pages 828–837.
Luu, K., Ricanek, K., Bui, T., and Suen, C. (2009). Age es-
timation using active appearance models and support
vector machine regression. the IEEE Conf. on Bio-
metrics: Theory, Applications, and Systems (BTAS),
pages 1–5.
Luu, K., Seshadri, K., Savvides, M., and Bui, T.D.and Suen,
C. (2011). Contourlet appearance model for facial
age estimation. Int. Joint Conf. on Biometrics (IJCB),
pages 1–8.
Makinen, E. and Raisamo, R. (2008). An experimental
comparison of gender classification methods. Pattern
Recognition Letters, 29(10):1544–1556.
Moghaddam, B. and Yang, M. (2002). Learning gender
with support faces. IEEE trans. on PAMI, 24(5):707–
711.
Ojala, T., Pietikinen, M., and Maenpaa, T. (2002). Multires-
olution gray-scale and rotation invariant texture clas-
sification with local binary patterns. IEEE Trans. on
PAMI, 24:7:971–9.
Phothisane, P., Bigorgne, E., Collot, L., and Prevost, L.
(2011). A robust composite metric for head pose
tracking using an accurate face model. In Proc. FG,
pages 694–699.
Ramanathan, N. and Chellappa, R. (2006). Face verifica-
tion across age progression. IEEE Trans. on Image
Processing, 15(11):3349–3361.
Shakhnarovich, G., Viola, P., and Moghaddam, B. (2002).
A unified learning framework for real time face detec-
tion and classification. FG, pages 14–21.
Shan, C. (2012). Learning local binary patterns for gender
classification on real-world face images. Patt. Recog.
Letters, 33(4):431–437.
Shan, C., Gong, S., and McOwan, P. (2008). Fusing gait
and face cues for human gender recognition. NVR,
71(10-12):1931–1938.
Thukral, P., Mitra, K., and Chellappa, R. (2012). A hierar-
chical approach for human age estimation. ICASSP,
pages 1529–1532.
Wild, H., Barett, S., Spence, M. J., O’Toole, A., Cheng,
Y., and Brooke, J. (2000). Recognition and sex cate-
gorization of adults’ and children’s faces: Examining
performance in the absence of sex-stereotyped cues.
Jour. of Exp. Child Psychology, 77:269–291.
Yan, S., Wang, H., Tang, X., and T.S., H. (2007). Learning
auto-structured regressor from uncertain nonnegative
labels. ICCV, pages 1–8.
Zhang, W., Shan, S., Zhang, H., Gao, W., and Chen, X.
(2005). Multi-resolution histograms of local vari-
ation patterns (mhlvp) for robust face recognition.
Audio- and Video-Based Biometric Person Authenti-
cation, pages 7:937–944.
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
798