User Semantic Model for Dependent Attributes to Enhance Collaborative Filtering
Sonia Ben Ticha, Azim Roussanaly, Anne Boyer, Khaled Bsaïes
2014
Abstract
Recommender system provides relevant items to users from huge catalogue. Collaborative filtering and content-based filtering are the most widely used techniques in personalized recommender systems. Collaborative filtering uses only the user-ratings data to make predictions, while content-based filtering relies on semantic information of items for recommendation. Hybrid recommendation system combines the two techniques. The aim of this work is to introduce a new approach for semantically enhanced collaborative filtering. Many works have addressed this problem by proposing hybrid solutions. In this paper, we present another hybridization technique that predicts users preferences for items based on their inferred preferences for semantic information of items. For this, we design a new user semantic model by using Rocchio algorithm and we apply a latent semantic analysis to reduce the dimension of data. Applying our approach to real data, the MoviesLens 1M dataset, significant improvement can be noticed compared to usage only approach, and hybrid algorithm.
References
- Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the
- Knowl. Data Eng., 17(6):734-749.
- Balabanovic, M. and Shoham, Y. (1997). Fab: Contentbased, collaborative recommendation. Commun. ACM, 40(3):66-72.
- Ben Ticha, S., Roussanaly, A., and Boyer, A. (2011). User semantic model for hybrid recommender systems. In The 1st Int. Conf. on Social Eco-Informatics - SOTICS, Barcelona, Espagne. IARIA.
- Ben Ticha, S., Roussanaly, A., Boyer, A., and Bsaïes, K. (2012). User semantic preferences for collaborative recommendations. In 13th Int. Conf. on E-Commerce and Web Technologies - EC-Web, pages 203-211, Vienna, Austria. Springer.
- Burke, R. D. (2007). Hybrid web recommender systems. In The Adaptive Web, volume 4321 of Lecture Notes in Computer Science, pages 377-408. Springer.
- Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and Technology, 38(1):188-230.
- Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. (2004). Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5-53.
- HetRec2011 (2011). In 2nd Int Workshop on Information Heterogeneity and Fusion in Recommender Systems. The 5th ACM Conf. RecSys.
- Lops, P., de Gemmis, M., and Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Recommender Systems Handbook, pages 73-105. Springer US.
- Manzato, M. G. (2012). Discovering latent factors from movies genres for enhanced recommendation. In The 6th ACM conf. on Recommender systems - RecSys, pages 249-252, Dublin, Ireland.
- Mobasher, B., Jin, X., and Zhou, Y. (2003). Semantically enhanced collaborative filtering on the web. In 1st European Web Mining Forum, volume 3209, pages 57- 76, Cavtat-Dubrovnik, Croatia.
- Pazzani, M. and Billsus, D. (2007). Content-based recommendation systems. In The Adaptive Web, volume 4321 of Lecture Notes in Computer Science, pages 325-341. Springer Berlin Heidelberg.
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of netnews. In The 1994 ACM conf. on Computer supported cooperative work, pages 175-186, Chapel Hill, North Carolina, USA.
- Rocchio, J. (1971). Relevance feedback in information retrieval. In Salton, G., editor, The Smart Retrieval System - Experiments in Automatic Document Processing, chapter 14, pages 313-323. Prentice-Hall, Inc.
- Salton, G. (1989). Automatic Text Processing. AddisonWesley.
- Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In The 10 Int. WWW Conf., pages 285-295, Hong Kong, China.
- Sen, S., Vig, J., and Riedl, J. (2009). Tagommenders: connecting users to items through tags. In The 18th Int Conf. on WWW, pages 671-680, Madrid, Spain.
- Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Adv. Artificial Intellegence.
Paper Citation
in Harvard Style
Ben Ticha S., Roussanaly A., Boyer A. and Bsaïes K. (2014). User Semantic Model for Dependent Attributes to Enhance Collaborative Filtering . In Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-758-024-6, pages 205-212. DOI: 10.5220/0004951102050212
in Bibtex Style
@conference{webist14,
author={Sonia Ben Ticha and Azim Roussanaly and Anne Boyer and Khaled Bsaïes},
title={User Semantic Model for Dependent Attributes to Enhance Collaborative Filtering},
booktitle={Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},
year={2014},
pages={205-212},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004951102050212},
isbn={978-989-758-024-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - User Semantic Model for Dependent Attributes to Enhance Collaborative Filtering
SN - 978-989-758-024-6
AU - Ben Ticha S.
AU - Roussanaly A.
AU - Boyer A.
AU - Bsaïes K.
PY - 2014
SP - 205
EP - 212
DO - 10.5220/0004951102050212