An Approach to Detect Polarity Variation Rules for Sentiment Analysis

Pierluca Sangiorgi, Agnese Augello, Giovanni Pilato

2014

Abstract

Sentiment Analysis is a discipline that aims at identifying and extract the subjectivity expressed by authors of information sources. Sentiment Analysis can be applied at different level of granularity and each of them still has open issues. In this paper we propose a completely unsupervised approach aimed at inducing a set of words patterns that change the polarity of subjective terms. This is a very important task because, while sentiment lexicons are valid tools that can be used to identify the polarity at word level, working at different level of granularity they are no longer sufficient, because of the various aspects to consider like the context, the use of negations and so on that can change the polarity of subjective terms.

References

  1. Baccianella, S., Esuli, A., and Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Chair), N. C. C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., and Tapias, D., editors, Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. European Language Resources Association (ELRA).
  2. Banea, C., Mihalcea, R., and Wiebe, J. (2011). Multilingual Sentiment and Subjectivity Analysis. ACL 2012.
  3. Chardon, B., Benamara, F., Mathieu, Y., Popescu, V., and Asher, N. (2013). Sentiment composition using a parabolic model. In Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) - Long Papers, pages 47-58, Potsdam, Germany. Association for Computational Linguistics.
  4. Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 7804, pages 168-177, New York, NY, USA. ACM.
  5. Moilanen, K. and Pulman, S. (2007). Sentiment composition. In Proceedings of Recent Advances in Natural Language Processing (RANLP 2007), pages 378-382.
  6. Montoyo, A., Martínez-Barco, P., and Balahur, A. (2012). Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments. Decision Support Systems, 53(4):675 - 679.
  7. Pitel, G. and Grefenstette, G. (2008). Semi automatic building method for a multidimensional affect dictionary for a new language. In LREC. European Language Resources Association.
  8. Polanyi, L. and Zaenen, A. (2006). Contextual valence shifters. In Shanahan, J., Qu, Y., and Wiebe, J., editors, Computing Attitude and Affect in Text: Theory and Applications, volume 20 of The Information Retrieval Series, pages 1-10. Springer Netherlands.
  9. Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1985). A comprehensive grammar of the English language. Longman, London.
  10. Stone, P. J. and Hunt, E. B. (1963). A computer approach to content analysis: studies using the general inquirer system. In Proceedings of the May 21-23, 1963, spring joint computer conference, AFIPS 7863 (Spring), pages 241-256, New York, NY, USA. ACM.
  11. Strapparava, C. and Valitutti, A. (2004). Wordnet affect: an affective extension of wordnet. In In Proceedings of the 4th International Conference on Language Resources and Evaluation, pages 1083-1086.
  12. Tan, L.-W., Na, J.-C., Theng, Y.-L., and Chang, K. (2012). Phrase-level sentiment polarity classification using rule-based typed dependencies and additional complex phrases consideration. Journal of Computer Science and Technology, 27(3):650-666.
  13. Tromp, E. and Pechenizkiy, M. (2013). Rbem: A rule based approach to polarity detection. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, WISDOM 7813, pages 8:1-8:9, New York, NY, USA. ACM.
  14. Turney, P. D. and Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic orientation from association. ACM Trans. Inf. Syst., 21(4):315-346.
  15. Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., Cardie, C., Riloff, E., and Patwardhan, S. (2005a). Opinionfinder: A system for subjectivity analysis. In HLT/EMNLP. The Association for Computational Linguistics.
  16. Wilson, T., Wiebe, J., and Hoffmann, P. (2005b). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 7805, pages 347- 354, Stroudsburg, PA, USA. Association for Computational Linguistics.
  17. Wu, Y., Zhang, Q., Huang, X., and Wu, L. (2011). Structural opinion mining for graph-based sentiment representation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 7811, pages 1332-1341, Stroudsburg, PA, USA. Association for Computational Linguistics.
  18. Yessenalina, A. and Cardie, C. (2011). Compositional matrix-space models for sentiment analysis. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 7811, pages 172-182, Stroudsburg, PA, USA. Association for Computational Linguistics.
Download


Paper Citation


in Harvard Style

Sangiorgi P., Augello A. and Pilato G. (2014). An Approach to Detect Polarity Variation Rules for Sentiment Analysis . In Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-758-024-6, pages 344-349. DOI: 10.5220/0004961903440349


in Bibtex Style

@conference{webist14,
author={Pierluca Sangiorgi and Agnese Augello and Giovanni Pilato},
title={An Approach to Detect Polarity Variation Rules for Sentiment Analysis},
booktitle={Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},
year={2014},
pages={344-349},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004961903440349},
isbn={978-989-758-024-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - An Approach to Detect Polarity Variation Rules for Sentiment Analysis
SN - 978-989-758-024-6
AU - Sangiorgi P.
AU - Augello A.
AU - Pilato G.
PY - 2014
SP - 344
EP - 349
DO - 10.5220/0004961903440349