Vectorization of Content-based Image Retrieval Process Using Neural Network

Hanen Karamti, Mohamed Tmar, Faiez Gargouri

2014

Abstract

The rapid development of digitization and data storage techniques resulted in images’ volume increase. In order to cope with this increasing amount of informations, it is necessary to develop tools to accelerate and facilitate the access to information and to ensure the relevance of information available to users. These tools must minimize the problems related to the image indexing used to represent content query information. The present paper is at the heart of this issue. Indeed, we put forward the creation of a new retrieval model based on a neural network which transforms any image retrieval process into a vector space model. The results obtained by this model are illustrated through some experiments.

References

  1. Braquelaire, J. P. and Brun, L. (1997). Comparison and optimization of methods of color image quantization. IEEE Transactions on Image Processing, 6(7):1048- 1052.
  2. ByoungChul Ko, H. B. (2005). Frip: a region-based image retrieval tool using automatic image segmentation and stepwise boolean and matching. Trans. Multi., pages 105-113.
  3. Caron, Y., Makris, P., and Vincent, N. (2005). Caractérisation d une région d intéreˆt dans les images. In Extraction et gestion des connaissances (EGC 2005), pages 451-462.
  4. Claveau, V., Tavenard, R., and Amsaleg, L. (2010). Vectorisation des processus d'appariement documentrequeˆte. In CORIA, pages 313-324. Centre de Publication Universitaire.
  5. Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., and Schmid, C. (2009). Evaluation of gist descriptors for web-scale image search. In Proceedings of the ACM International Conference on Image and Video Retrieval, CIVR 7809, pages 19:1-19:8, New York, NY, USA. ACM.
  6. Flickner, M. (1997). Query by image and video content: The QBIC system. In Intelligent Multimedia Information Retrieval, pages 7-22. American Association for Artificial Intelligence.
  7. Fournier, J., Cord, M., and Philipp-Foliguet, S. (2001). Retin: A content-based image indexing and retrieval system.
  8. Karamti, H. (2013). Vectorisation du modèle d'appariement pour la recherche d'images par le contenu. In CORIA, pages 335-340.
  9. Karamti, H., Tmar, M., and BenAmmar, A. (2012). A new relevance feedback approach for multimedia retrieval. In IKE, July 16-19, Las Vegas Nevada, USA, page 129.
  10. Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A. (2007). Object retrieval with large vocabularies and fast spatial matching. In CVPR.
  11. Philbin, J., Isard, M., Sivic, J., and Zisserman, A. (2010). Descriptor learning for efficient retrieval. In Proceedings of the 11th European Conference on Computer Vision Conference on Computer Vision: Part III, ECCV'10, pages 677-691, Berlin, Heidelberg. Springer-Verlag.
  12. Rivero-Moreno, C. and Bres, S. (2003). Les filtres de Hermite et de Gabor donnent-ils des modéles équivalents du systéme visuel humain? In ORASIS, pages 423- 432.
  13. Schettini, R., Ciocca, G., and Gagliardi, I. (2009). Feature extraction for content-based image retrieval. In Encyclopedia of Database Systems, pages 1115-1119.
  14. Srinivasa, K. G., Sridharan, K., Shenoy, P. D., Venugopal, K. R., and Patnaik, L. M. (2006). A neural network based cbir system using sti features and relevance feedback. Intell. Data Anal., 10(2):121-137.
  15. Tollari, S. (2006). Indexation et recherche d'images par fusion d'informations textuelles et visuelles. PhD thesis.
  16. Winder, S. A. J., Hua, G., and Brown, M. (2009). Picking the best daisy. In CVPR, pages 178-185.
  17. Zhu, Y., Liu, X., and Mio, W. (2007). Content-based image categorization and retrieval using neural networks. In ICME, pages 528-531. IEEE.
Download


Paper Citation


in Harvard Style

Karamti H., Tmar M. and Gargouri F. (2014). Vectorization of Content-based Image Retrieval Process Using Neural Network . In Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-028-4, pages 435-439. DOI: 10.5220/0004972004350439


in Bibtex Style

@conference{iceis14,
author={Hanen Karamti and Mohamed Tmar and Faiez Gargouri},
title={Vectorization of Content-based Image Retrieval Process Using Neural Network},
booktitle={Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2014},
pages={435-439},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004972004350439},
isbn={978-989-758-028-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - Vectorization of Content-based Image Retrieval Process Using Neural Network
SN - 978-989-758-028-4
AU - Karamti H.
AU - Tmar M.
AU - Gargouri F.
PY - 2014
SP - 435
EP - 439
DO - 10.5220/0004972004350439