Gay, D. M. (1990). Usage summary for selected optimiza-
tion routines. Computing Science Technical Report
153, AT&T Bell Laboratories.
Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical
Optimization. Academic Press, New York.
Griewank, A. and Walther, A. (2008). Evaluating Deriva-
tives: Principles and Techniques of Algorithmic Dif-
ferentiation. Number 105 in Other Titles in Applied
Mathematics. SIAM, Philadelphia, PA, 2nd edition.
Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E. L.,
Nitzberg, B., Saphir, W., and Snir, M. (1998). MPI–
The Complete Reference: Volume 2, The MPI-2 Ex-
tensions. MIT Press, Cambridge, MA, USA.
Hasco
¨
et, L. and Pascual, V. (2013). The Tapenade au-
tomatic differentiation tool: Principles, model, and
specification. ACM Trans. Math. Softw., 39(3):20:1–
20:43.
Henning, M. (2008). The rise and fall of CORBA. Commu-
nications of the ACM, 51(8):52–57.
Kenny, J. P., Benson, S. J., Alexeev, Y., Sarich, J.,
Janssen, C. L., Curfman McInnes, L., Krishnan, M.,
Nieplocha, J., Jurrus, E., Fahlstrom, C., and Windus,
T. L. (2004). Component-based integration of chem-
istry and optimization software. Journal of Computa-
tional Chemistry, 25(14):1717–1725.
K
¨
orkel, S. (2002). Numerische Methoden f
¨
ur Optimale
Versuchsplanungsprobleme bei nichtlinearen DAE-
Modellen. PhD thesis, University of Heidelberg, Ger-
many.
Lawrence, C. T. and Tits, A. L. (1996). Nonlinear equality
constraints in feasible sequential quadratic program-
ming. Optimization Methods and Software, 6:265–
282.
Lindstr
¨
om, P. and Wedin, P.-
˚
A. (1999). Gauss-Newton
based algorithms for constrained nonlinear least
squares problems. Department of Computing Science,
Faculty of Science and Technology, Ume
˚
a University,
Sweden.
Munson, T., Sarich, J., Wild, S., Benson, S., and Curfman
McInnes, L. (2012). TAO 2.0 users manual. Technical
Report ANL/MCS–TM–322, Mathematics and Com-
puter Science Division, Argonne National Laboratory.
http://www.mcs.anl.gov/tao.
Nocedal, J. and Wright, S. J. (2006). Numerical Optimiza-
tion. Springer, New York, 2nd edition.
Object Management Group (2012). Common Object Re-
quest Broker Architecture (CORBA): Specification,
Version 3.3. http://www.omg.org/spec/CORBA/3.3.
Oliphant, T. E. (2007). Python for scientific computing.
Computing in Science & Engineering, 9(3):10–20.
OpenMP Architecture Review Board (2013). OpenMP
Application Program Interface, Version 4.0.
http://www.openmp.org.
Pukelsheim, F. (2006). Optimal Design of Experiments.
Number 50 in Classics in Applied Mathematics.
SIAM, Philadelphia.
Rall, L. B. (1981). Automatic Differentiation: Techniques
and Applications, volume 120. Springer Verlag,
Berlin.
Rasch, A. and B
¨
ucker, H. M. (2010). EFCOSS: An interac-
tive environment facilitating optimal experimental de-
sign. ACM Transactions on Mathematical Software,
37(2):13:1–13:37.
Seidler, R., B
¨
ucker, H. M., Padalkina, K., Herty, M.,
Niederau, J., Marquart, G., and Rasch, A. (2014).
Redesigning the EFCOSS framework towards finding
optimally located boreholes in geothermal engineer-
ing. In Horv
´
at, I. and Rus
´
ak, Z., editors, Proceed-
ings of the tenth international symposium on tools and
methods of competetive engineering (TMCE 2014),
May 19–23, 2014, Budapest, Hungary, pages 831–
842.
Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Don-
garra, J. (1995). MPI–The Complete Reference. MIT
Press, Cambridge, MA, USA.
Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W.,
and Dongarra, J. (1998). MPI–The Complete Refer-
ence: Volume 1, The MPI Core. MIT Press, Cam-
bridge, MA, USA, 2nd edition.
The Scipy Community (2013). SciPy v0.13.0 reference
guide.
Wedin, P.-
˚
A. and Lindstr
¨
om, P. (1988). Methods and soft-
ware for nonlinear least squares problems. Technical
Report UMINF–133.87, Inst. of Information Process-
ing, University of Ume
˚
a, Ume
˚
a, Sweden.
ICSOFT-EA2014-9thInternationalConferenceonSoftwareEngineeringandApplications
454