be ported to other kinds of persistence systems like
graph databases.
A data structure always consists of the basic stor-
age structure definition in connection with a set of al-
gorithms to handle the data flow inside this structure.
The data structure in connection with retrieval algo-
rithms was already present in advance of this work.
Yet, the reorganisation algorithms were missing. This
gap is now closed as we presented efficient algorithms
for this task.
REFERENCES
Ang, C.-H. and Tan, T. C. (1997). New linear node splitting
algorithm for r-trees. In SSD ’97: Proceedings of the
5th International Symposium on Advances in Spatial
Databases, pages 339–349, London, UK. Springer-
Verlag.
Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger,
B. (1990). The r*-tree: An efficient and robust ac-
cess method for points and rectangles. SIGMOD Rec.,
19(2):322–331.
Bentley, J. L. (1975). Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9):509–517.
Chen, L., Cong, G., Jensen, C. S., and Wu, D. (2013). Spa-
tial keyword query processing: an experimental eval-
uation. In Proceedings of the 39th international con-
ference on Very Large Data Bases, PVLDB’13, pages
217–228. VLDB Endowment.
Felipe, I. D., Hristidis, V., and Rishe, N. (2008). Keyword
search on spatial databases. International Conference
on Data Engineering, 0:656–665.
Guttman, A. (1984). R-trees. a dynamic index structure for
spatial searching. In SIGMOD ’84: Proceedings of
the 1984 ACM SIGMOD international conference on
Management of data, pages 47–57, New York, NY,
USA. ACM.
G
¨
obel, R. and de la Cruz, A. (2007). Computer science
challenges for retrieving security related information
from the internet. Global Monitoring for Security and
Stability (GMOSS), -:90 – 101.
G
¨
obel, R., Henrich, A., Niemann, R., and Blank, D. (2009).
A hybrid index structure for geo-textual searches. In
Proceeding of the 18th ACM conference on Informa-
tion and knowledge management, CIKM ’09, pages
1625–1628, New York, NY, USA. ACM.
G
¨
obel, R. and Kropf, C. (2010). Towards hybrid index
structures for multi-media search criteria. In DMS,
pages 143–148. Knowledge Systems Institute.
Kropf, C., Ahmmed, S., G
¨
obel, R., and Niemann, R. (2011).
A geo-textual search engine approach assisting dis-
aster recovery, crisis management and early warning
systems. In Geo-information for Disaster manage-
ment (Gi4DM).
O’Neil, E. J., O’Neil, P. E., and Weikum, G. (1993). The
lru-k page replacement algorithm for database disk
buffering. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’93, pages 297–306, New York, NY, USA.
ACM.
Porter, M. F. (1997). Readings in information retrieval.
chapter An algorithm for suffix stripping, pages 313–
316. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.
Rocha-Junior, J. a. B. and Nørv
˚
ag, K. (2012). Top-k spa-
tial keyword queries on road networks. In Proceed-
ings of the 15th International Conference on Extend-
ing Database Technology, EDBT ’12, pages 168–179,
New York, NY, USA. ACM.
Rocha-Junior, J. B., Gkorgkas, O., Jonassen, S., and
Nørv
˚
ag, K. (2011). Efficient processing of top-
k spatial keyword queries. In Proceedings of the
International Symposium on Spatial and Temporal
Databases (SSTD), volume 6849 of LNCS, pages 205–
222. Springer.
Vaid, S., Jones, C. B., Joho, H., and Sanderson, M. (2005).
Spatio-textual indexing for geographical search on the
web. In 9th International Symposium on Spatial and
Temporal Databases SSTD 2005, volume 3633 of Lec-
ture Notes in Computer Science, pages 218–235.
Wu, D., Yiu, M. L., Cong, G., and Jensen, C. S. (2012).
Joint top-k spatial keyword query processing. Knowl-
edge and Data Engineering, IEEE Transactions on,
24(10):1889 –1903.
Zhang, D., Chee, Y. M., Mondal, A., Tung, A. K. H., and
Kitsuregawa, M. (2009). Keyword search in spatial
databases: Towards searching by document. Data En-
gineering, International Conference on, 0:688–699.
Zhou, Y., Xie, X., Wang, C., Gong, Y., and Ma, W.-Y.
(2005). Hybrid index structures for location-based
web search. In CIKM ’05: Proceedings of the 14th
ACM international conference on Information and
knowledge management, pages 155–162, New York,
NY, USA. ACM.
Zipf, G. K. (1949). Human Behaviour and the Principle
of Least Effort: an Introduction to Human Ecology.
Addison-Wesley.
DATA2014-3rdInternationalConferenceonDataManagementTechnologiesandApplications
242