Batini, C. and Scannapieco, M. (2006). Data Quality: Con-
cepts, Methodologies and Techniques. Data-Centric
Systems and Applications. Springer.
Bertossi, L. (2006). Consistent query answering in
databases. ACM Sigmod Record, 35(2):68–76.
Boselli, R., Cesarini, M., Mercorio, F., and Mezzanzan-
ica, M. (2013). Inconsistency knowledge discov-
ery for longitudinal data management: A model-
based approach. In SouthCHI13 special session on
Human-Computer Interaction & Knowledge Discov-
ery, LNCS, vol. 7947. Springer.
Boselli, R., Cesarini, M., Mercorio, F., and Mezzanzanica,
M. (2014a). Planning meets data cleansing. In The
24th International Conference on Automated Plan-
ning and Scheduling (ICAPS), pages 439–443. AAAI.
Boselli, R., Cesarini, M., Mercorio, F., and Mezzanzan-
ica, M. (2014b). A policy-based cleansing and inte-
gration framework for labour and healthcare data. In
Holzinger, A. and Igor, J., editors, Interactive Knowl-
edge Discovery and Data Mining in Biomedical In-
formatics, volume 8401 of LNCS, pages 141–168.
Springer.
Boselli, R., Cesarini, M., Mercorio, F., and Mezzanzanica,
M. (2014c). Towards data cleansing via planning. In-
telligenza Artificiale, 8(1):57–69.
Chomicki, J. and Marcinkowski, J. (2005a). Minimal-
change integrity maintenance using tuple deletions.
Information and Computation, 197(1):90–121.
Chomicki, J. and Marcinkowski, J. (2005b). On the compu-
tational complexity of minimal-change integrity main-
tenance in relational databases. In Inconsistency Tol-
erance, pages 119–150. Springer.
Clemente, P., Kaba, B., Rouzaud-Cornabas, J., Alexandre,
M., and Aujay, G. (2012). Sptrack: Visual analysis of
information flows within selinux policies and attack
logs. In AMT Special Session on Human-Computer
Interaction and Knowledge Discovery, volume 7669
of LNCS, pages 596–605. Springer.
Cong, G., Fan, W., Geerts, F., Jia, X., and Ma, S. (2007).
Improving data quality: Consistency and accuracy. In
Proceedings of the 33rd international conference on
Very large data bases, pages 315–326. VLDB Endow-
ment.
Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A. K.,
Ilyas, I. F., Ouzzani, M., and Tang, N. (2013). Nadeef:
a commodity data cleaning system. In Ross, K. A.,
Srivastava, D., and Papadias, D., editors, SIGMOD
Conference, pages 541–552. ACM.
De Silva, V. and Carlsson, G. (2004). Topological estima-
tion using witness complexes. In Proceedings of the
First Eurographics conference on Point-Based Graph-
ics, pages 157–166. Eurographics Association.
Della Penna, G., Intrigila, B., Magazzeni, D., and Mer-
corio, F. (2009). UPMurphi: a tool for universal
planning on PDDL+ problems. In Proceeding of the
19th International Conference on Automated Plan-
ning and Scheduling (ICAPS) 2009, pages 106–113.
AAAI Press.
Devaraj, S. and Kohli, R. (2000). Information technol-
ogy payoff in the health-care industry: a longitudinal
study. Journal of Management Information Systems,
16(4):41–68.
Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S.
(2007). Duplicate record detection: A survey. Knowl-
edge and Data Engineering, IEEE Transactions on,
19(1):1–16.
Fan, W., Li, J., Ma, S., Tang, N., and Yu, W. (2010). To-
wards certain fixes with editing rules and master data.
Proceedings of the VLDB Endowment, 3(1-2):173–
184.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996).
The kdd process for extracting useful knowledge from
volumes of data. Communications of the ACM,
39(11):27–34.
Fellegi, I. P. and Holt, D. (1976). A systematic approach to
automatic edit and imputation. Journal of the Ameri-
can Statistical association, 71(353):17–35.
Ferreira de Oliveira, M. C. and Levkowitz, H. (2003). From
visual data exploration to visual data mining: A sur-
vey. IEEE Trans. Vis. Comput. Graph., 9(3):378–394.
Fisher, C., Laur
´
ıa, E., Chengalur-Smith, S., and Wang, R.
(2012). Introduction to information quality. Author-
House.
Fox, C., Levitin, A., and Redman, T. (1994). The notion of
data and its quality dimensions. Information process-
ing & management, 30(1):9–19.
Hansen, P. and J
¨
arvelin, K. (2005). Collaborative infor-
mation retrieval in an information-intensive domain.
Information Processing & Management, 41(5):1101–
1119.
Holzinger, A. (2012). On knowledge discovery and interac-
tive intelligent visualization of biomedical data - chal-
lenges in human-computer interaction & biomedical
informatics. In Helfert, M., Francalanci, C., and Fil-
ipe, J., editors, DATA. SciTePress.
Holzinger, A., Bruschi, M., and Eder, W. (2013a). On in-
teractive data visualization of physiological low-cost-
sensor data with focus on mental stress. In Cuzzocrea,
A., Kittl, C., Simos, D. E., Weippl, E., and Xu, L.,
editors, CD-ARES, volume 8127 of Lecture Notes in
Computer Science, pages 469–480. Springer.
Holzinger, A., Yildirim, P., Geier, M., and Simonic, K.-
M. (2013b). Quality-based knowledge discovery from
medical text on the web. In (Pasi et al., 2013b), pages
145–158.
Holzinger, A. and Zupan, M. (2013). Knodwat: A scientific
framework application for testing knowledge discov-
ery methods for the biomedical domain. BMC Bioin-
formatics, 14:191.
Kapovich, I., Myasnikov, A., Schupp, P., and Shpilrain, V.
(2003). Generic-case complexity, decision problems
in group theory, and random walks. Journal of Alge-
bra, 264(2):665–694.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection. In
Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence - Volume 2, IJCAI’95,
pages 1137–1143, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.
DATA2014-3rdInternationalConferenceonDataManagementTechnologiesandApplications
200