A Variable Structure Controller for a Class of Hyper-redundant Arms
Decebal Popescu, Nirvana Popescu, Mircea Ivanescu, Dorin Popescu
2014
Abstract
The paper treats the control problem of a class of hyper-redundant robot constituted by a chain of continuum segments. The technological model basis is a central, long and thin, highly flexible and elastic backbone. The driving system is a decoupled one. The main parameters of the arm control are determined by the curvature and curvature gradient. The dynamic model is inferred. A sliding mode control system is used in order to achieve a desired shape of the arm. The stability of the closed loop control system is proven. Numerical simulations are also provided to verify the effectiveness of the presented approach.
References
- Robinson ,G. , Davies, G. B. C., 1999 “Continuum Robots - a State of the Art”, Proc. IEEE Int. Conf. on Robotics and Automation, Detroit, May 1999, Pp. 2849 - 2854.
- Gravagne, Ian A., Walker, Ian D., 2000, On the kinematics of remotely - actuated continuum robots, Proc. 2000 IEEE Int. Conf. on Robotics and Automation, San Francisco, April 2000, pp. 2544-2550.
- Gravagne, Ian A., Walker, 2000 Ian D., Kinematic Transformations for Remotely-Actuated Planar Continuum Robots, Proc. 2000 IEEE Int. Conf. on Rob. and Aut., San Francisco, April 2000, pp. 19-26.
- Chirikjian, G. S., Burdick, J. W.,1990, an Obstacle Avoidance Algorithm for Hyper-Redundant Manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, Ohio, May 1990, Pp. 625 - 631.
- Mochiyama , H., Kobayashi, H.1999, the Shape Jacobian of a Manipulator with Hyper Degrees of Freedom, Proc. 1999 IEEE Int. Conf. on Robotics and Automation, Detroit, May 1999, Pp. 2837- 2842.
- Braganza, D., D.M. Dawson, Walker, N. Nath, N., 2007, “A Neural Network Controller for Continuum Robots”, IEEE Transaction Robotics, Vol. 23, Issue 6, Dec. 2007, Pp. 1270 - 1277.
- Walker, I., M. Hannan, M., 1999, “A novel elephant's trunk robot”, AIM 7899, pp. 410 - 415.
- Jones, B., I. D. Walker, 2006, “Practical kinematics for real-time implementation of continuum robots”, IEEE Trans. Robotics, vol. 22, no. 6, Dec. 2006, pp. 1087 - 1099.
- Kapadia, I. Walker, D. Dawson,2009 “a Model - based Sliding Mode Controller for Extensible Continuum Robots”, Recent Advances in Signal Processing, Robotics and Automation, ISPRA Conf., 2009, Pp. 103 - 120.
- Popescu, N., Popescu, D., Ivanescu, M., Nitulescu, M., 2014, the Curvature Control of a Hyper-Redundant Robot Proc. of Int. Symp of Robotics, Munich, June, 2014 ,Pp 251-257.
- G. La Spina, M. Sfakiotakis, D. Tsakiris, a. Memciassi, P. Dario, 2007, Polychaete-like Undulatory Robotic Locomotion in Unstructured Substrates, IEEE Trans on Robotics, Vol 23,No 6,Febr 2007, Pp1200-1212.
- Kejun Ning, F.Worgotter, 2009, a Novel Concept for Building a Hyper-Redundant Chain Robot, IEEE Trans on Robotics, Vol 25,No 6,Dec 2009, Pp 1237- 1248.
- Rucker, D. C., B. A. Jones, R. J. Webster III,2010, A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots, IEEE Trans on Robotics, vol 26,No 5,Oct 2010, pp769-780.
- Bailly, Y., Y. Amirat, G. Fried, Modeling and Control of a Continuum Style Microrobot for Endovascular Surgery, IEEE Trans on Robotics, Vol 27,No 5,Oct 201, Pp 1024-1030.
- Bajo, A., N. Simaan, 2012, Kinematics-based Detection and Localization of Contacts along Multisegment Continuum Robots, IEEE Trans on Robotics, Vol 28,No 2,April 2012, Pp 291-302.
- B. A. Jones, I. D. Walker, „Kinematics for Multisection Continuum Robots”, IEEE Transactions on Robotics, VOL. 22, NO. 1, Febr. 2006, 43- 51.
- R. Fareh, M. Saad, M. Saad, „Workspace Tracking Trajectory for 7-DOF ANAT Robot using a Hierarchical Control Strategy”, 2012 20th mediterranean Conference on Control & Automation (MED), Barcelona, Spain, July 3-6,2012 122-128.
- H. Shang, J. F. Forbes, and M. Guay. “Feedback Control of Hyperbolic Distributed Parameter Systems”, Chemical Engineering Science, 60:969 - 980, 2005.
- F. Fahimi, H. Ashrafiuon, and C. Nataraj, (2002) “an Improved Inverse Kinematic and Velocity Solution for Spatial Hyper-Redundant Robots,” IEEE Trans. on Robotics and Automation, Vol. 18, No. 1, Feb. 2002, Pp. 103-107.
- S. Hirose, Umetani,Y,(1976), Kinematic Control of Active Cord Mechanism with Tactile Sensors, Proc of 2nd Int CISM-IFT Symp. on Theory and Practice of Robots and Manipulators, Pp 241-252,1976.
- A. Kapadia, I. Walker, D. Dawson, (2009), “a Model - based Sliding Mode Controller for Extensible Continuum Robots”, Recent Advances in Signal Processing, Robotics and Automation, ISPRA Conf., 2009, Pp. 103 - 120.
- R. J. Webster, B. A. Jones, “Design and Kinematic Modelling of Constant Curvature Continuum Robots:a Review”, the International Journal of Robotics Research, 29 (13), 2010, Pp. 1661-1683,
- M. W. Hannan, “Real-Time Estimation for Continuum Robots using Vision”, Robotica, Vol 23 /Issue 05, Sept. 2005, Pp 645-661.
- The time derivative of 1
Paper Citation
in Harvard Style
Popescu D., Popescu N., Ivanescu M. and Popescu D. (2014). A Variable Structure Controller for a Class of Hyper-redundant Arms . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 121-126. DOI: 10.5220/0005005901210126
in Bibtex Style
@conference{icinco14,
author={Decebal Popescu and Nirvana Popescu and Mircea Ivanescu and Dorin Popescu},
title={A Variable Structure Controller for a Class of Hyper-redundant Arms},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={121-126},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005005901210126},
isbn={978-989-758-039-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A Variable Structure Controller for a Class of Hyper-redundant Arms
SN - 978-989-758-039-0
AU - Popescu D.
AU - Popescu N.
AU - Ivanescu M.
AU - Popescu D.
PY - 2014
SP - 121
EP - 126
DO - 10.5220/0005005901210126