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Abstract: Flight simulators can be categorised as research simulators, engineering simulators and training simulators. 
Research simulators can be introduced as both test beds for flight simulator research and computational 
tools for flight systems and human factors research. While engineering simulators are utilised for systems 
development, training simulators are used for flight training. The models that are used in training simulators 
and also in engineering simulators are more mature and stable. On the other hand, the models in research 
simulators are subject to a constant change. While Model Based Design and Software Development has 
brought us agile model development workflows, so that modellers can update their models more easily, it 
came up with some serious systems integration and testing problems, so systems developers need to 
establish mechanisms to tackle frequent behaviour and interface changes. DLR’s Institute of Flight Systems 
(FT) has a long tradition in flight research and simulation of various flight vehicles. Currently a modern 
research simulator facility is being operated at DLR Braunschweig –AVES (Air Vehicle Simulator). AVES 
is designed such that interchangeable cockpits of rotorcraft (EC135) and airplanes (A320) can be operated 
on motion and fixed-base platforms according to the particular needs. 2Simulate is the enabling real-time 
simulation infrastructure of the AVES. This paper presents 2Simulate model integration workflow based on 
Mathwork’s Simulink Coder. 

1 INTRODUCTION 

Till late 1920s, when Edward Link built one of the 
early examples of flight simulators, they have been 
important elements of aviation. These first examples 
which were known as Blue Box, were designed to 
train pilots for instrumented flight (Allerton, 2009). 
Before digital era, flight simulators became well 
accepted as training aids by many aircraft operators. 
Then as the fidelity of flight simulators increased, 
engineering standards to build flight simulators for 
flight training were developed. 

As flight simulators became de facto tools in 
flight training, they were also started to be used in 
aircraft development. After 1980s, testing and 
validation of aircraft systems started to be done in 
engineering flight simulators. Thus, potentially 
dangerous and expensive flight tests could be 
avoided (Allerton, 1999).  

In 80s, aeronautics research community was also 
using flight simulators for developing and 
experimenting advanced concepts. ATTAS 
Simulator from German Aerospace Center (DLR) 

(Saager, 1990) (Klaes, 2000), NASA Crew Vehicle 
Systems Research Facility in Ames Research Center 
(Sullivan & Soukup, 1996) and Visual Motion 
Simulation and Cockpit Motion Facility from 
Langley Research Center (Smith, 2000) were some 
of the first examples of research flight simulators. 
Some of the recent ones are Air Vehicle Simulator 
(AVES) of German Aerospace Center (DLR) (Duda 
et al., 2013), HELIFLIGHT from the University of 
Liverpool (White & Padfield, 2006), NASA Ames 
Vertical Motion Simulator (Advani et al., 2002) and 
SIMONA of the Delft University of Technology 
(Stroosma et al., 2003). 

The organisation of a flight simulator is 
structured around the flight dynamics model. There 
may be various components that supports or works 
with flight dynamics model, like aerodynamics 
model, landing gears model, weather model, engine 
model and subsystem models. The architecture of 
these models varies from simulator to simulator. 
They can either be implemented as a single model or 
various models interacting in a tightly coupled 
manner. The other important components like 
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control loading, instructor station, motion system, 
visual system, instrument displays either provide 
inputs to these models or present their results to the 
pilot as cues (Allerton, 2009).  

Research simulators have been used as the test 
beds for flight simulator, flight systems and human 
factors research. So, while the models that are used 
in training simulators and even in engineering 
simulators are more mature and stable, the models in 
research simulators are subject to a constant change. 

Recent advances in Model Based Design and 
Software Development (MBDSD) have brought 
aeronautics community agile model development 
workflows. So that model development is integrated 
to product development employing mature code 
generation practices (Ruff et al., 2012). Models 
developed to design the products now became the 
bases for code generation to be deployed in the 
product.  

For research flight simulators with MBDSD, the 
models that are built to study overall systems (e.g. 
Flight Dynamics Model) and subsystem (e.g. Flight 
Warning Computer Model) behaviour became the 
bases for generating code to be deployed in real time 
flight simulators. These models serve for researchers 
that exercise various aspects of aircraft in their 
desktop environments, and for simulator developers 
to simulate aircraft system and sub systems.   

Research simulator developers need to establish 
mechanisms to tackle frequent behaviour and 
interface changes in models. And constant model 
changes in a research habitat can only be enabled 
with a model integration workflow in the systems 
development. But flight simulator literature lacks in 
reporting any efforts. 

There are some recommended practices from the 
aerospace industry for model based flight systems 
design and development. Estrada et al. introduce 
best practices for developing DO-178 compliant 
software using Model-Based Design and 
Development (Estrada, R.G. et al., 2013). Miller 
presents automatic flight code generation practices 
in Northrop Grumman (Miller, 2007) and introduces 
a use case from desktop simulation to Hardware in 
the Loop testing. BAE Systems has a model based 
flight control systems development process 
(Fielding, 2010).  Fielding presents a process 
starting from aerodynamic dataset generation to 
flight clearance of the aircraft. In this process he 
mentions the use of engineering simulators for 
model based flight control system design. Nixon 
states that in F-35 project MBDSD forced them to 
reinterpret traditional software development process 
for flight control systems (Nixon, 2004). He 

introduces Lockheed Martin Aeronautics practices 
of MBDSD. 

On the other hand, there exists a vast amount of 
effort to develop integration workflows for their 
model based developed software component. In one 
of them (Guido and Thompson, 2008) from Math-
works, authors propose a workflow to develop 
software components to be integrated to Automotive 
Open System Architecture (AUTOSAR). 
AUTOSAR specifies the architecture to integrate 
functional applications over a hardware abstracting 
runtime environment in automotive electronic 
control units. The presented workflow enables 
modellers to develop an infrastructure compliant 
model development and seamless integration over a 
standard architecture.  

 

 

Figure 1: DLR AVES. 

DLR’s Institute of Flight Systems (FT) has a 
long tradition in flight research and simulation of 
various flight vehicles. Currently AVES, a modern 
research simulator facility is being operated at DLR 
Braunschweig. AVES is designed such that 
interchangeable cockpits of rotorcraft (EC135) and 
airplanes (A320) can be operated on motion and 
fixed-base platforms according to the particular 
needs. 2Simulate is the enabling real-time simulation 
infrastructure of AVES. All simulator software 
components are integrated over this infrastructure. 
This effort adopts best practices from both aerospace 
and automotive industries. It tackles the model 
integration problem of research flight simulators by 
developing a model integration workflow for the 
indigenous simulator infrastructure, namely 
2Simulate. The motivation is to contribute to flight 
simulator development by introducing a model 
integration workflow for institutionalizing MBDSD. 

The paper presents the Mathwork’s Simulink 
Coder based model integration workflow of 
2Simulate infrastructure in AVES facility. This 
workflow provides the users of AVES a shortened 
time to simulator after they updated their models. 
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First the reader will be introduced to 2Simulate. 
Following the presentation of proposed model 
integration workflow, how the 2Simulate Model 
Control is designed to enable this workflow will be 
discussed. Sample model integration will then be 
provided to exemplify the concepts and technologies 
introduced. 

2 2SIMULATE 

AVES was developed based upon the strategy to 
employ reusable, flexible, standardized and properly 
validated software modules. 2Simulate is an overall 
simulation framework to facilitate integrating a wide 
range of models and simulation components like 
external devices, data recorders or image generators. 
(Gotschlich et al., 2014). 

It is a C++ real-time distributed simulation 
framework which is composed of three components, 
namely 2Simulate Real-Time Framework (2SimRT), 
2Simulate Model Control (2SimMC) and 2Simulate 
Control Center (2SimCC) (Figure 2). 

 

 

Figure 2: 2Simulate Components. 

2SimRT is the core simulation framework of 
2Simulate that provides deterministic scheduling and 
controlling of real-time tasks. It comes as libraries 
and API header files for Windows to support soft 
real time implementations like desktop simulators, 
or QNX to support hard real time implementations 
like full flight simulators. Hard real time use case is 
targeted in the scope of this paper. Any simulation 
application that is based on 2SimRT is called a 
Target. Targets possess various real-time tasks that 
are implemented utilizing the 2SimRT API. 
TSimModel is one of these real-time tasks used for 
integrating Simulink models. Tasks can be 
programmed using their pre- and post-initialization 
and pre- and post-process callbacks. 2SimRT also 
provides a Common Database to manage the data 
flow through the internal and external interfaces 
(Figure 3). 

Figure 3: Main 2Simulate Classe.s 

2SimMC is the enabler of model integration 
workflow. It is composed of 2Simulate Model 
Control Source (2SimMC-Source) that abstracts 
model interfaces for 2SimRT, and 2Simulate Model 
Control Scripts (2SimMC-Scripts) that includes 
Simulink Coder Target Language Compiler files 
(TLC files) to specify the 2Simulate target and m-
files to conduct the code generation and build 
process. 

2SimCC is the graphical user interface that is 
configured to a Control Center for specific needs. It 
is a Windows executable which can be customized 
via configuration files called 2SimCC project files. 
Control Center can run, pause or stop various 
Targets. Besides, it accesses the Target Data 
Dictionaries which can be defined as the data access 
mechanisms and enables presenting or editing 
Target data at runtime. It can also enable user 
management to define and enforce user access 
rights. 

3 INTEGRATION WORKFLOW 

Model integration workflow is triggered if any of the 
simulator models in the simulator are updated. As 
soon as the update is tested and verified in the 
modeling environment, which is Matlab/Simulink, 
the modeler would like to deploy it to its target. The 
process assumes that the modeler assures that the 
model is valid and correct. 

Proposed workflow starts with a static model 
checking step before continuing to generating source 
code. Checking a model for modeling guidelines 
will provide a set of valuable information about 
what best practices or guidelines are violated. Thus 
it contributes to the quality of the model (Fey and 
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Stürmer, 2007). Measuring and assessing the quality 
of the model for code generation has various aspects 
including structured and automated testing, coverage 
analysis, complexity analysis, modeling guidelines 
(Stürmer and Pohlheim, 2012). Matlab Model 
Advisor is employed as a starting point in this step 
to check the mode for conditions and configurations 
that may lead to generation of inaccurate and 
inefficient code (The MathWorks, Inc., 2007) . 

 

Figure 4: Model Integration Workflow. 

As depicted in Figure 4, the next step is building 
the model for 2Simulate target. The Simulink model 
can be used with 2Simulate after it has been 
converted into C++ code using Mathworks Simulink 
Coder (The Mathworks, Inc., 2014a). A part of the 
Simulink Coder is the Target Language Compiler. It 
specifies the code generation (The Mathworks, Inc., 
2014b) utilizing so called system target files, which 
can be customized for specific needs. 2Simulate has 

such a set of customized system target files. They 
embed 2SimMC into the model code during the code 
generation. Thus, an auto-generated model is readily 
available for 2Simulate model task. At this step, 
these set of target files are employed. The details of 
2Simulate system target files will be presented in the 
next section. 

The changes in the model interface are traceable 
over the signal specifications for the model 
generated, while code generation process. It is 
almost clear that any change in the model interface 
will cause an update in the other simulator 
components that depend on these signals. So the 
next step of the integration workflow is to trigger an 
update process for the other components if any 
change in the model interface is identified. 

The next two steps in the process aims at 
preparing the model application source project. At 
first Model Integration Framework is checked out 
from the source repository. This framework is a 
wrapper for the generated model code. It creates a 
2SimRT target using the generated model code. This 
wrapper code is refactored automatically for model 
specific parameters. As an example, the solver step 
size of the model is set as the frequency of the model 
task in the Model Integration Framework code. After 
refactoring model application code is ready for 
compilation. 

The rest of the process is to cross-compile the 
application code for the QNX target and deploy the 
generated image to the target system. At the end of 
the workflow, the updated model becomes readily 
runnable at the target system. 

4 2SIMULATE MODEL 
CONTROL 

In this section, components of 2SimMC, 2SimMC-
Scripts and 2SimMC-Source will be introduced. 

There are two types of scripts in 2SimMC-
Scripts. A Matlab script TSimModelBuilder.m is in 
charge for Matlab automation for every step that is 
depicted in Figure 4. And TLC files are used to 
specify the 2Simulate target. 

TSimModelBuilder.m makes use of Matlab 
command line utilities for controlling Model 
Advisor, Simulink Coder and calling some external 
executables for source control, cross-compilation 
and secure shell. It also conducts refactoring in the 
Model Integration Framework code employing file 
and string manipulation utilities of Matlab. Below is 
a representative code extract from 
TSimModelBuilder.m 
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Simulink Coder allows its users to select a target 

for code generation. Target Language Compiler on 
the other hand, provides capabilities to specify 
targets through customizing the generated code to 
produce platform or application specific code. It 
transforms model.rtw, the intermediate form of 
Simulink block diagram into C or C++ code. Code 
generation is controlled by TLC files. TLC files 
have uses a syntax like Perl or other scripting 
languages, augmented with data handling 
capabilities of Matlab (The Mathworks, Inc., 
2014b). One can create and modify the generated 
code, generation time data processing with TLC 
directives and accessing model structure captured in 
model.rtw. It provides looping, file I/O, scoping type 
powerful scripting tools. 

For 2Simulate a target specification called 
grt_2Simulate is implemented by 2SimMC-Scripts 
TLC files. These files extend generic real-time target 
provided by Simulink Coder. The top level entry 
point is grt_2Simulate.grt. As presented in Figure 5, 
it first calls codegenentry.tlc to generate model code 
and then calls all eight 2Simulate TLC files to 
generate 2SimMC-Component code. 

2SimMC-Component code is composed of 
sources for a 2SimRT task, model, data dictionary, 
model defines and specifications for input and 
output signals. Task and model TLC files extend 
 

grt_2Simulate

TSimSimulinkModel_h.tlc

TSimSimulinkModel_cpp.tlc

TSimSimulinkTask_h.tlc

TSimSimulinkTask_cpp.tlc

codegenetry.tlc
<<use>>

<<extend>>

TSimSimulinkModel_Input_scd.tlc

TSimSimulinkModel_Output_scd.tlc

TSimSimulinkModeDataDic_cpp.tlc

TSimSimulinkModelDefines_h.tlc

  

Figure 5: 2Simulate System Target File Structure. 

 

Figure 6: 2SimMC-Component Classes. 

2SimRT API and glue it with generated model code 
(Figure 6). <Name>TSimSimulinkModel class 
inherits from TSimMcModelCtrl from 2SimRT API 
and includes <name>.h that enables it to access 
Simulink model code. On the other hand 
<Name>TSimSimulinkTask class inherits from both 
model class and TSimSimulinkTask from 2SimRT 
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API, so that one can use this class to create a 
schedulable 2SimRT task for the Simulink model. 

TSimSimulinkModelDataDict_cpp.tlc generates a 
source file for setters and getter of the data 
dictionary. These setters and getters allow their users 
to access and modify model parameters, contentious 
states and state derivatives as well as model input 
and outputs. 

<name>ModelDefines.h is a helper file to 
specify model wide global parameters. Below is an 
excerpt from TSimSimulinkModeDefines_h.tlc that 
demonstrates a sample scripting in a TLC file.  

 

 
 

Above one can see how TLC tokens are used to 
get information from the model and incorporate 
them in the source code. As an example, number of 
continuous states are defined using the token 
CompiledModel.NumContStates. 

As a final step, Target Language Compiler is 
used as a model-to-text transformation tool for 
generation signal specifications for inputs and 
outputs of the model as ASCII files. With these two 
TLC files, TSimSimulinkModel_Input_scd.tlc and 
TSimSimulinkModel_Output_scd.tlc, the limits of 
Target Language Compiler are pushed to generate 
project or platform specific files. Below is an 
excerpt from these TLC files. 

 

 

5 A SAMPLE MODEL 
INTEGRATION 

In this section, the model integration workflow that 
has been introduced will be used for a sample 
Simulink model. We will use an open source 
Quadrotor Flight Dynamics and Control Model 
(Mathworks File Exchange, 2013) (Figure 7) which 
implements flight dynamics and control algorithms 
from Bouabdallah’s work (Samir, 2007). 

 

Figure 7: Simulink Model of Quadrotor Flight Dynamics 
and Control. 

As we run TSimModelBuilder.m for 
quadrotor.mdl, the process will lead us through the 
steps of Figure 4 till to the deployment of the 
binaries for the model application to the specified 
target. 

 

Figure 8: Generated Files. 

The workflow leads to a structure that is 
presented in Figure 8. The files generated by the 
Target Language Compiler stay under the root of 
quadrotor_2Simulate directory. The Model 
Integration Framework that includes 3rdparty 
dependencies, model application source code and 
QNX Development Environment project is checked 
out to 2Simulate directory. 

The main routine of the model application code 
can be found in mdlTarget.cpp. As given in the 
following code excerpt, 2SimRT application 
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possesses three tasks. The first one is for the model, 
the second one is for the Control Center and the last 
one is for UDP communication to other simulation 
components. 
 

 
 

Then the generated source files are cross-
compiled to QNX and the image is deployed to a 
QNX target using the open source tool WinSCP.  
 

 

Figure 9: Console Running quadrotorMdl. 

The Model Integration Workflow presented in 
this paper ends when the image of the model 
application is deployed to the specified target. The 
deployment scenarios launch mechanisms and 
network settings vary between simulators. Figure 9 
presents a snapshot from a QNX console that runs 
the deployed model application image. 

6 CONCLUSIONS 

As in other research flight simulators, model update 
is a constant process also in DLR AVES. Flight 
systems researchers work for extending and 
enhancing their models or their systems. The 
presented Model Integration Workflow intends to 
make shortened Time-to-Deployment. Furthermore, 
with automated code generation and deployment 
process, man made errors are avoided. 

With this workflow, the flight systems 
researchers, that use MBDSD practices, are 
supported for easy and fast integration and 

deployment of their models. Users of this workflow 
can integrate and deploy their models in AVES 
within a minimum time. 

This workflow is currently operated over the 
Matlab command prompt. While it supports update 
to deployment process, it lacks in intuitive user 
interface for configuration and execution. 
Furthermore it has no support for run time 
monitoring and debug. Future plans include 
developing a graphical user interface and Simulink 
blocks for run time monitoring. Thus the users of the 
workflow will be able to monitor and debug their 
models that run in AVES from Simulink.   
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