Modeling and H∞ Composite Control of the Coupled Hysteretic Dynamics in Piezoelectric Micro-displacement Systems
Liang Tang, Lei Liu, Xin Guan
2014
Abstract
This paper investigates the modeling and H∞ composite control of the coupled hysteretic dynamics in a piezoelectric micro-displacement system (PMS). First, the coupled multi-field hysteretic dynamics with physical meanings is presented for PMS. Next, the composite control analysis of the hysteretic dynamics is proposed. Then, a H∞ synthesis controller is designed by using the simplified hysteretic dynamics. To enhance the H∞ performance, the inversion-based feedforward compensation is augmented. The proposed H∞ feedback control and the inversion-based feedforward can be designed separately. Finally, the experimental studies are provided to demonstrate the proposed H∞ composite control approach.
References
- Brokate, M. and Sprekels, J. (1996). Hysteresis and Phase Transitions. Springer-Verlag, Berlin-HeidelbergNewYork.
- Clayton, G., T. S. L. K.-Z. Q. and Devasia, S. (2009). A review of feedforward control approaches in nanopositioning for high-speed SPM. ASME J. Dyn. Syst. Control, 131(6):061101.
- Devasia, S., E. E. and Moheimani, S. (2007). A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol., 15(5):802-823.
- Dewella, L., P. N. and Blaurockb, C. (2005). Precision telescope pointing and spacecraft vibration isolation for the terrestrial planet finder coronagraph. Preceding of SPIE conference on UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts. Bellingham, 2005, vol. 5899, pp. 589902.
- Fleming, A. (2010). Nanapositioning system with force feedback for high performance tracking and vibration control. IEEE/ASME Trans. Mechatron., 15(3):433- 446.
- Janaiden, M. and Rakheja, S. (2008). Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Mater. Struc., 7:035026.
- Jiang, H., J. H. Q. J. and Chen, Y. (2010). A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(5):1200-1210.
- Kamesha, D., P. R. and Ghosalb, A. (2010). Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft. Journal of Sound and Vibration, 329(17):3431-3450.
- Laneand, S. and Lacy, S. (2008). Active vibration control of a deployable optical telescope. Journal of Spacecraft and Rocket, 45(3):568-586.
- Leaning, K. K. and Devasia, S. (2007). Feedback linearized inverse feedforward for creep, hysteresis and vibration compensation in AFM piezoactuators. IEEE Trans. Control Syst. Technol., 15(5):927-935.
- Liaw, H. and Shirinzadeh, B. (2009). Neural network motion tracking control of piezo actuated flexure based mechanisms for micro nanomanipulation. IEEE/ASME Trans. Mechatron., 14(5):517-27.
- Liu, L., T. K. and Lee, T. H. (2012). SVD-based preisach hysteresis identification and composite control of piezo actuators. ISA Trans., 51(3):430-438.
- Liu, L., T. K. C. S.-L. T. C. and Lee, T. H. (2013a). Discrete composite control of piezoelectric actuators for high speed precision scanning. IEEE Transactions on Industrial Informatics, 9(3):859-868.
- Liu, L., T. K. T. C.-C. S.-L. and Lee, T. H. (2013b). Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators. IEEE Trans. Control Syst. Technol., 21(5):1834- 1845.
- Maillarda, T., C. F. and LeLettya, R. (2009). Piezo mechatronic based systems in aircraft, space and defense applications. Space Exploration Technologies II, 2009, vol. 7331, pp. 73310K.
- Mayergozy, I. (2003). Mathematical Modeling of Hysteresis and Their Application. Elsevier, Amsterdam, 2nd edition.
- McMickell, M., K. T. and Hansen, E. (2007). Optical payload isolation using the Miniature Vibration Isolation System (MVIS-II). SPIE Industrial and Commercial Applications of Smart Structures Technologies, vol. 6527, pp.652703.
- Nagashima, M. and Agrawal, B. (2014). Active control of adaptive optics system in a large segmented mirror telescope. International Journal of Systems Science, 45(2):159-175.
- Neat, G., A. A. and Goullioud, R. (1998). Overview of the micro precision interferometer testbed. Philadelphia. American Control Conference, pp.1563-1568.
- Shieh, H.-J. and Hsu, C.-H. (2008). An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Trans. Ind. Electron., 55(4):1729-38.
- Skogestad, S. and Postlethwaite, I. (2005). Multivariable Feedback Control: Design and Analysis. John Wiley and Sons Ltd, Chichester, 2nd edition.
- Tan, U., L. W. S. C.-R. C. N. and Ang, W. T. (2009). Feedforward controller of ill-conditioned hysteresis using singularity-free Prandtl-Ishlinskii model. IEEE/ASME Trans. Mechatron., 14(5):598-605.
- Wu, Y. and Zou, Q. (2009). Robust inversion-based 2- DOF control design for output tracking: piezoelectricactuator example. IEEE Trans. Control. Syst. Technol., 17(5):1069-1082.
Paper Citation
in Harvard Style
Tang L., Liu L. and Guan X. (2014). Modeling and H∞ Composite Control of the Coupled Hysteretic Dynamics in Piezoelectric Micro-displacement Systems . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 441-449. DOI: 10.5220/0005015204410449
in Bibtex Style
@conference{icinco14,
author={Liang Tang and Lei Liu and Xin Guan},
title={Modeling and H∞ Composite Control of the Coupled Hysteretic Dynamics in Piezoelectric Micro-displacement Systems},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={441-449},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005015204410449},
isbn={978-989-758-039-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Modeling and H∞ Composite Control of the Coupled Hysteretic Dynamics in Piezoelectric Micro-displacement Systems
SN - 978-989-758-039-0
AU - Tang L.
AU - Liu L.
AU - Guan X.
PY - 2014
SP - 441
EP - 449
DO - 10.5220/0005015204410449