Collaborative Kalman Filtration - Bayesian Perspective
Kamil Dedecius
2014
Abstract
The contribution studies the problem of collaborative Kalman filtering over distributed networks with or without a fusion center from the theoretically consistent Bayesian perspective. After presenting the Bayesian derivation of the basic Kalman filter, we develop a versatile method allowing exchange of observations among the network nodes and their local incorporation. A probabilistic nodes selection technique based on prior knowledge of nodes performance is proposed to reduce the communication requirements.
References
- Cattivelli, F. S., Lopes, C. G., and Sayed, A. H. (2008). Diffusion Recursive Least-Squares for Distributed Estimation over Adaptive Networks. IEEE Trans. Signal Processing, 56(5):1865-1877.
- Cattivelli, F. S. and Sayed, A. H. (2010). Diffusion Strategies for Distributed Kalman Filtering and Smoothing. IEEE Trans. Automat. Contr., 55(9):2069-2084.
- Cattivelli, F. S. and Sayed, A. H. (2011). Analysis of Spatial and Incremental LMS Processing for Distributed Estimation. IEEE Trans. Signal Processing, 59(4):1465- 1480.
- Dedecius, K. and Sec?kárová, V. (2013). Dynamic Diffusion Estimation in Exponential Family Models. IEEE Signal Process. Lett., 20(11):1114-1117.
- Gupta, V., Chung, T. H., Hassibi, B. and Murray, R. M. (2006). On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica, 42(2), 251-260.
- Mo, Y., Ambrosino, R. and Sinopoli, B. (2011). Sensor selection strategies for state estimation in energy constrained wireless sensor networks. Automatica, 47(7), 1330-1338.
- Yang, W., Chen, G., Wang, X. and Shi, L. (2014). Stochastic sensor activation for distributed state estimation over a sensor network. Automatica [in Press]. doi:10.1016/j.automatica.2014.05.025
- Dedecius, K. (2014). Diffusion estimation of state-space models: Bayesian formulation. Submitted to 2014 IEEE Machine Learning for Signal Processing Workshop.
- Meinhold, R. J. and Singpurwalla, N. D. (1983). Understanding the Kalman Filter. The American Statistician, 37(2):123-127.
- Meyer, C. (2000). Matrix analysis and applied linear algebra. SIAM.
- Olfati-Saber, R. (2007). Distributed Kalman filtering for sensor networks. In 2007 46th IEEE Conference on Decision and Control, pages 5492-5498. IEEE.
- Peterka, V. (1981). Bayesian approach to system identification. In Eykhoff, P., editor, Trends and Progress in System Identification, pages 239-304. Pergamon Press, Oxford, U.K.
- Ribeiro, A., Giannakis, G., and Roumeliotis, S. (2006). SOI-KF: Distributed Kalman Filtering With Low-Cost Communications Using the Sign of Innovations. IEEE Trans. Signal Processing, 54(12):4782-4795.
- Simon, D. (2006). Optimal state estimation: Kalman, H¥, and nonlinear approaches. Wiley.
- Speyer, J. L. (1978). Computation and Transmission Requirements for a Decentralized Linear-QuadraticGaussian Control Problem. IEEE Trans. Autom. Contr., 24(2):266-269.
Paper Citation
in Harvard Style
Dedecius K. (2014). Collaborative Kalman Filtration - Bayesian Perspective . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 468-474. DOI: 10.5220/0005018104680474
in Bibtex Style
@conference{icinco14,
author={Kamil Dedecius},
title={Collaborative Kalman Filtration - Bayesian Perspective},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={468-474},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005018104680474},
isbn={978-989-758-039-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Collaborative Kalman Filtration - Bayesian Perspective
SN - 978-989-758-039-0
AU - Dedecius K.
PY - 2014
SP - 468
EP - 474
DO - 10.5220/0005018104680474