research would also include improving query
suggestion by using knowledge base and user
feedback, such as click-through data, through
computational intelligence approaches.
REFERENCES
Baeza-Yates, R. and Ribeiro-Neto, B., 2011. Modern
information retrieval: the concepts and technology
behind search. England: Pearson Education Limited.
Baeza-Yates, R., Hurtado, C., and Mendoza, M., 2004.
Query recommendation using query logs in search
engines. In Proc. of the 2004 International Conference
on Current Trends in Database Technology, page 588-
596
Biega, J., Kuzey, E., and Suchanek, F., 2013. Inside
YAGO2s: A transparent information extraction
architecture. In Proc. of WWW 2013, Rio de Janeiro,
Brazil.
Blizard, W. D., 1989. Multiset theory. Notre Dame
Journal of Formal Logic, vol. 30, no. 1, page 36-66.
Boldi, P., Bonchi, F., Castillo, C., Donato, D., and Vigna,
S., 2009. Query suggestion using query flow graphs.
In Proc. of the 2009 Workshop on Web Search Click
Data, Milan, Italy, page 56-63.
Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A,
and Vigna, S., 2008. The query flow graph: model and
applications. In Proc. of CIKM’08, California, USA.
Bordag,
S., 2008. A comparison of co-occurrence and
similarity measures as simulations of context. In Proc.
of the 9th International Conference on Computational
Linguistics and Intelligent Text Processing, Springer-
Verlag Berlin, Heidelberg, page 52-63.
Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., and
Li, H., 2008. Context-aware query suggestion by
mining click-through and session data. In Proc. of
KDD’2008, Nevada, USA.
Costa, M., Miranda, J., Cruz, D., and Gomes, D., 2012.
Query suggestion for web archive search. In Proc. of
the 10th International Conference on Preservation of
Digital Objects (iPres 2013), Lisbon, Portugal.
Delgado, M., Martin-Bautista, M.J., Sanchez, D., Serrano,
J.M., and Vila, M.A., 2009. Association rules and
fuzzy association rules to find new query terms. In
Proc. of the Third Conference of the EUSFLAT,
Lisbon, Portugal, page 49–53.
Dybkjaer, L., Hemsen, H., and Minker, W. (Eds.), 2007.
Evaluation of text and speech systems. Springer,
Dordrecht, Netherlands.
Fonseca, B.M., Golgher, P.B., de Moura, E.S., and Ziviani
N., 2003. Using association rules to discover search
engines related queries. In Proc. of The First Latin
American Web Congress, USA, page 66-71.
Gong, Z., Cheang, C., and Hou, L., 2005. Web query
expansion by WordNet. In LNCS 3588, page 166-175.
He, B. and Ounis, I., 2009. Studying query expansion
effectiveness. In Proc. of the 31th European
Conference on IR Research on Advances in
Information Retrieval, Toulouse, France , page 611 –
619.
Hoffart, J., Suchanek, F., Berberich, K., Lewis-Kelham,
E., Melo, G., and Weikum, G., 2011. YAGO2:
exploring and querying world knowledge in time,
space, context, and many languages. In Proc. of WWW
2011, Hyderabad, India.
Hu, H., Zhang, M., He, Z., Wang, P., and Wang, W.,
2013. Diversifying query suggestions by using topics
from Wikipedia. In Proc. of the 2013 IEEE/WIC/ACM
International Conferences on Web Intelligence and
Intelligent Agent Technology, Atlanta, GA.
Huang, C., Chien, L., and Oyang, Y., 2003. Relevant term
suggestion in interactive web search based on
contextual information in query session logs. Journal
of the American Society for Information \Science and
Technology, vol. 54, no. 7, page 638-649.
Jurafsky, D. and Martin, J. H., 2008. Speech and
language processing: an introduction to natural
language processing. Computational Linguistics and
Speech Recognition. Second Edition, Prentice Hall.
Kato, M., Sakai, T., and Tanaka, K. 2011. Query session
data vs. clickthrough data as query suggestion
resources. In Proc. of ECIR 2011, Dublin, Ireland.
Kato, M., Sakai, T., and Tanaka, K., 2012. Structured
query suggestion for specialization and parallel
movement: effect on search behaviors. In Proc. of
WWW 2012, Lyon, France, page 389-398.
Kato, M., Sakai, T., and Tanaka, K., 2013. When do
people use query suggestion? A query suggestion log
analysis. Information Retrieval, vol. 16, no. 6, page
725-746.
Kelly, D., Cushing, A., Dostert, M., Niu, X., and
Gyllstrom, K., 2010. Effects of popularity and quality
on the usage of query suggestions during information
search. In Proc. of CHI’2010, Atlanta, USA.
Kruschwitz, U., Lungley, D., Albakour, M. and Song, D.,
2013. Deriving query suggestions for site search. In
Journal of the American Society for Information
Science and Technology, vol. 64, no. 10, page 1975–
1994.
Kulkarni, S. and Caragea, D., 2009. Computation of the
semantic relatedness between words using concept
clouds. In Proc. of KDIR 2009, page 183-188.
Liao, Z., Song, Y., Huang, Y., He, L., and He, Q. 2014.
Task trail: an effective segmentation of user search
behavior. IEEE Transactions on Knowledge and Data
Engineering (in press)
Manning, C. D., Raghavan, P., and Schutze, H., 2008.
Introduction to information retrieval. England:
Cambridge University Press.
Mei, Q., Zhou, D., and Church, K., 2008. Query
suggestion using hitting time. In Proc. of CIKM’08,
California, USA.
Nallapati, R. and Shah, C., 2006. Evaluating the quality of
query refinement suggestions in information retrieval.
In Proc. of CIKM 2006, Arlington, Virginia, USA.
Okabe, M. and Yamada, S., 2007. Semisupervised query
expansion with minimal feedback. IEEE Transactions
PerformanceEvaluationofState-of-the-ArtRankedRetrievalMethodsandTheirCombinationsforQuerySuggestion
147