Observer-based controller Design for Remotely Operated Vehicle ROV

Adel Khadhraoui, Lotfi Beji, Samir Otmane, Azgal Abichou

2014

Abstract

This paper presents a method to design an observer-based controller that simultaneously solves global estimation of state and asymptotic stabilization of an underactuated remotely operated vehicle moving in the in three-dimensional. The vehicle does not have a sway and roll actuator and has only position and orientation measurements available. The control development is based on Lyapunov’s direct method for nonlinear system.

References

  1. Arcak, M. (2002). Observer-based backstepping with weak nonlinear damping. In American Control Conference, volume 5, pages 3478-3483.
  2. Berghuis, H. and Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots. IEEE Transactions on Robotics and Automation, 9:740-754.
  3. Chang, W.-J. and Chen, P.-H. (2013). Stabilization for truck-trailer mobile robot system via discrete lpv t-s fuzzy models. In Intelligent Autonomous Systems 12, volume 193, pages 209-217.
  4. Dounia, S., Mohammed, C., Salim, L., and ThierryMarie, G. (2012). Robust h8 static output feedback stabilization of t-s fuzzy systems subject to actuator saturation. International Journal of Control, Automation and Systems, 10(3):613-622.
  5. F. Rezazadegan, K. S. and Chatraei, A. (2013). Design of an adaptive nonlinear controller for an autonomous underwater vehicle. 2:1-8.
  6. Fossen, T. I. (1994). Guidence and Control of Ocean Vehicules. Chichester: Wiley.
  7. Fridman, L., Shtessel, Y., Edwards, C., and Yan, X.-G. (2008). Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. International Journal of Robust and Nonlinear Control, 18(4-5).
  8. Gauthier, J.-P., Hammouri, H., and Othman, S. (1992). A simple observer for nonlinear systems applications to bioreactors. IEEE Transactions on Automatic Control, 37:875-880.
  9. Gauthier, J. P. and Kupka, I. A. K. (1994). Observability and observers for nonlinear systems. SIAM J. Control Optim., 32:975-994.
  10. Kazantzis, N. and Kravaris, C. (1997). Nonlinear observer design using lyapunov's auxiliary theorem. In the 36th IEEE Conference on Decision and Control, volume 5, pages 4802-4807.
  11. Khadhraoui, A. Beji, L., Otmane, S., and Abichou, A. (2013). Explicit homogenous time varying stabilizing control of a submarine rov. In International Conference on Informatics in Control, Automation and Robotics, (ICINCO 2013), volume 6, pages 26-32.
  12. Khalil, H. K. (2002). Nonlinear Systms. Prentice Hall, third edition.
  13. Langelaan, J. W. (2006). State Estimation for Autonomous Flight in Cluttered Environments. phd, Stanford University, Stanford, CA 94305.
  14. Li, J. and Qian, C. (2006). Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Transactions on Automatic Control, 51:879-884.
  15. Li, Y., Xia, X., and Shen, Y. (2011). A high-gain-based global finite-time nonlinear observer. In 9th IEEE International Conference on Control and Automation (ICCA), pages 483-488.
  16. Li, Y., Xia, X., and Shen, Y. (2013). A high-gain-based global finite-time nonlinear observer. International Journal of Control, 86:759-767.
  17. Pourgholi, M. and Majd, V. J. (2012). Robust adaptive observer design for lipschitz class of nonlinear systems. 6(3):29 - 33.
  18. Rigatos, G. G. (2012). Nonlinear kalman filters and particle filters for integrated navigation of unmanned aerial vehicles. Robot. Auton. Syst., 60:978-995.
  19. Shen, Y., Huang, Y., and Gu, J. (2011). Global finitetime observers for lipschitz nonlinear systems. IEEE Transactions on Automatic Control, 56:418-424.
  20. Takagi, T. and Sugenou, M. (1985). Fuzzy identification of systems and its applications to modeling and control. 15:116-132.
  21. Under the assumption 2.2, the inertia matrix takes the form (Fossen, 1994)
Download


Paper Citation


in Harvard Style

Khadhraoui A., Beji L., Otmane S. and Abichou A. (2014). Observer-based controller Design for Remotely Operated Vehicle ROV . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 200-207. DOI: 10.5220/0005019102000207


in Bibtex Style

@conference{icinco14,
author={Adel Khadhraoui and Lotfi Beji and Samir Otmane and Azgal Abichou},
title={Observer-based controller Design for Remotely Operated Vehicle ROV},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={200-207},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005019102000207},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Observer-based controller Design for Remotely Operated Vehicle ROV
SN - 978-989-758-039-0
AU - Khadhraoui A.
AU - Beji L.
AU - Otmane S.
AU - Abichou A.
PY - 2014
SP - 200
EP - 207
DO - 10.5220/0005019102000207