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Abstract: The phenomena of filled pauses and breaths pose a challenge to Automatic Speech Recognition (ASR) systems
dealing with spontaneous speech, including recognizer modules in Interactive Voice Reponse (IVR) systems.
We suggest a method based on Hidden Markov Models (HMM), which is easily integrated into HMM-based
ASR systems and allows detection of those disturbances without incorporating additional parameters. Our
method involves training the models of disturbances and their insertion in the phrase Markov chain between
word-final and word-initial phoneme models. Application of the method in our ASR shows improvement of
recognition results in Polish telephonic speech corpus LUNA.

1 INTRODUCTION

The Automatic Speech Recognition (ASR) has be-
come a feature desired by many companies as a way
to provide modern and ergonomic customer support
via the telephone - it replaces the outdated Dual Tone
Multi Frequency (DTMF) code navigation in Interac-
tive Voice Response (IVR) systems dialogue menus,
introducing more comfortable interface for their cus-
tomers. In this scenario, the tasks of ASR systems are
usually simple enough - recognize the word or a short
phrase uttered by the end-user and provide recogni-
tion results to the overseeing IVR system. Commonly,
the possibilities of dialogue options in such systems
are limited, which leads to another simplification for
the ASR - the dictionary is quite small, and may even
vary from menu to menu to decrease its size even
more.

One of the difficulties in such environments, how-
ever, is impossibility of guaranteeing, that the speaker
will talk to the system as planned by the dialogue
menu designers. A speaker rightfully assumes that
they can speak naturally, sometimes producing utter-
ances, phrases and sounds which do not exist in ASR
systems dictionary, or cannot be classified as speech.
This phenomenon is known as the out-of-vocabulary
(OOV) utterance. A special case of OOV that interests
us are sounds made by the user other than speech. We
call them acoustic disturbances, and classify several
of them: filled pauses (yyy, mmm, uhm, uh), breaths,

impulsive noises (e.g. tapping the phone), coughing,
blowing into the microphone, and similar. In normal
physiological conditions, people breathe at about 12-
20 breaths per minute (Konturek, 2007) (Ratan, 1993)
and when they speak, their breath frequency decreases
to about 10-12 breaths per minute (Igras and Ziółko,
2013a). As for the filled pauses, frequency of their
usage depends largely on individual speakers – how-
ever, it can reach even up to 10 fillers per minute (Bar-
czewska and Igras, 2012). Considering how frequent
these events are, means have to be developed to han-
dle them.

There exist some techniques for filled pause detec-
tion: cepstral variation based technique (Stouten and
Martens, 2003), pitch-based technique (Goto et al.,
1999) or formant-based technique (Audhkhasi et al.,
2009), which work under assumption that the spec-
tral variability of the filled pauses is low compared to
speech (see figure 1). Breaths may be either actively
looked for and detected (Igras and Ziółko, 2013b) or
intentionally omitted - Boakye and Stolcke (Boakye
and Stolcke, 2006) developed a speech activity detec-
tor based on Hidden Markov Models (HMM), which
does not react to breath events. A typical breath spec-
trum may be seen on figure 2.

We decided to investigate a different approach to
the problem. Because our ASR (Ziółko et al., 2011)
employs HMM to fit word models into segmented re-
gions of speech, delivered by a voice activity detector
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Figure 1: Time and spectral representation of an example of afilled pause. Notable features are its clearly distinguishable
formants and little spectral variation over time.

(VAD), it often occurs that a breath or a filled pause
is contained inside such a region. Those acoustic dis-
turbances may occur not only on phrase boundaries,
but also between words, if the speech is continuous.
We seek a way to allow the recognizer module to
deal with these disturbances without any additional
parametrisation steps (such as fundamental frequency
(F0) estimation or formants estimation), but based
only on the actual set of parameters defined in our sys-
tem. For the purpose of this research, we chose to use
the 13 Mel Frequency Cepstral Coefficients (MFCC)
along with their deltas and double deltas.

2 METHOD

We suggest a way to handle the speaker-generated
acoustic disturbances, especially the breaths and filled
pauses, by training their corresponding HMMs. Each
acoustic disturbance model is then added to the
phoneme model database of the ASR and is assigned

to a group of models that we call thesil group. The
idea behind introduction of group of models is to cre-
ate a set of optional paths in the Markov chain of the
word being detected, which allows skipping through
these grouped models - or a part of them - if a better
path can be found (i.e. the speaker had not uttered any
of the modelled disturbances, but he could have).

In our experiment, thesil group consists of a si-
lence model, a breath model and a filled pause model.
We investigated two types of insertion of this group:
in the first one, the possible transitions between dis-
turbance models are fixed, allowing detection of only
certain combinations of distrubances (Figure 3). For
example, a common sequence of(breath, filled pause)
would be detected, but a less common one:(filled
pause, breath)is not modelled by this type of inser-
tion. The second variant of insertion has no fixed tran-
sitions – every possible sequence of disturbances can
be modelled.

The models are inserted before the beginning
of each word and after its end, and in case of a
phrase they are inserted between each word and
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Figure 2: Time and spectral representation of an example of abreath. Unlike the filled pause, its spectrum is similiar to the
noise, although some indication of formants is observed.

on the phrase boundaries. An example of this in-
sertion - in our dictionary, there is a Polish phrase
o tak (in English: oh yes), which consists of four
phoneme models{O, T, A, K} and three optional si-
lence models{SIL}, represented by a Markov chain
{SIL, O, SIL, T, A, K, SIL}. After addition of acoustic
disturbances models{BREATH, FILLER}, the exact
Markov chain for this word looks like the following:
{SIL, BREATH, FILLER, O, SIL, BREATH, FILLER,
T, A, K, SIL, BREATH, FILLER}, where every non-
phoneme model may be omitted. Additionally, we
also checked the scenario which does not involve in-
sertion of silence models between words in a phrase,
leaving them only on phrases beginning and end.

In order to be able to control the sensitivity of
disturbances detection, we implemented an option to
include transition probability penalty for the distur-
bance models. The idea is to multiply between-model
transitions probabilities by weighting factors, which
sum to unity. The obligatory model transition weight
(i.e. the transition from the last phoneme of a preced-
ing word to the first phoneme of a following word) is

set to a certain value, and the difference between unity
and this value is divided equally by the number of op-
tional (disturbance) models inserted after word-final
phoneme model and assigned to each of them as their
transition probability weight. We investigated a total
of three scenarios: no penalty included (equal transi-
tion probability weighting factors), 50-50 penalty (0.5
weighting factor for the next phone model, and 0.5 to
split between disturbance models) and 75-25 penalty
(0.75 weighting factor for the next phone model, and
0.25 to split between disturbance models). For exam-
ple, on Figure 3, if a 50-50 penalty was applied, the
weighting factors would be 0.5 for O into T transition
and 0.(6) for O into SIL, O into BREATH and O into
FILLER transitions.

In order to perform the training of the acoustic dis-
turbances models, we prepared manual annotations of
breaths and filled pauses. Our data consists of record-
ings of Polish translations from Europarliament ses-
sions (Gollan et al., 2005) – 30 minutes, Polish radio
auditions – 60 minutes and LUNA, a corpus of Pol-
ish spontaneous telephonic speech (Marciniak, 2010)
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Figure 3: Example of disturbance models (SIL - silence model, BREATH - breath model, FILLER - filled pause model)
insertion into a Markov chain of a Polish phraseo tak (English equivalent:oh yes). If the transitions marked by the dashed
arrows are removed, then direction of transitions between disturbance models is fixed, disallowing a previous disturbance
model to appear again in the alignment. Otherwise, the transition direction is arbitrary - any combinations of disturbances is
being modelled.

– we annotated breaths and fillers in 80 minutes of
this corpus. A summary containing statistics of our
data is presented in Table 1. Each disturbance model
was trained to consist of three HMM states, with state
emission probability computed with use of a three-
component Gaussian Mixture Model (GMM).

Table 1: Statistics of training data used in acoustic distur-
bances model creation.

Disturbance Breath Filled Pause
Mean duration [ms] 372 417

Minimal duration [ms] 101 80
Maximal duration [ms] 1208 1350

Total duration [s] 217 249
Number of occurences 584 597

3 RESULTS

The testing corpus were another 80 minutes of
LUNA, which is 74 recordings, however, they were
different ones than used in the training. Each record-
ing from LUNA has an annotation of phrases being
spoken (in this context, a phrase is a sequence of
words separated by no more than 100ms silent pause),
but does not contain information about appearances
of breaths or filled pauses. We established, based on
the training data from LUNA (which contains 1258
phrases, that is 12% of all phrases in LUNA) that
breaths appear in about 13% of phrases and filled

pauses appear in about 15% of phrases.
We compared the recognition results of our ASR

in several different scenarios. In the first one, we
present three variants of configuration: NM – no addi-
tional models inserted between words in phrases, SM
– silence models inserted between words in phrases
and SM+DM, where both silence models and distur-
bance models were inserted between the words. The
results are presented in Table 2. In these tests, the
transitions between disturbance models were fixed, as
presented on Figure 3. Later, penalties for transition-
ing into disturbance model were applied to check for
improvement. 50-50 and 75-25 denote different types
of penalties, as explained in the section 2; NP stands
for no penalty.

Table 2: Results of correct recognition percentage in dif-
ferent data sets in three variants: NM (no models inserted
between words), SM (silence models inserted) and SM+DM
(silence and disturbances models inserted). The directions
of transitions between disturbance models are fixed.

NP 50-50 75-25
NM 80.3% – –
SM 77.6% – –

SM+DM 78.3% 79.2% 79.1%

These results suggested a problem with false
alarms raising at the current sensitivity level of distur-
bance (and silence) detection. Therefore, in the next
phase of testing, we continued to investigate the pos-
sibility of calibrating the system by forcing the tran-
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Figure 4: Histograms of bootstrapped recognition results from umodified (blue) and enhanced (red) variants of systems.

sitions from phoneme models to disturbance and si-
lence models to be less probable with help of tran-
sition penalties. We also noticed that a major factor
affecting negatively the recognition might be the in-
sertion of silence model, so we checked the results
of recognition without inserting it between the words.
We also introduced the arbitrary transition direction
between the disturbance and silence models, in order
to be able to detect every combination of disturbances.
The results are shown in Table 3.

Table 3: Results of correct recognition percentage in dif-
ferent data sets in two variants: with only silence models
inserted between words (SM) and with silence and distur-
bances models inserted between words (SM+DM). The di-
rections of transitions between disturbance models are arbi-
trary.

NP 50-50 75-25
SM+DM 80.2% 80.1% 80%

DM 81.1% 81.1% 81%

Introduction of the arbitrary transition directions
between disturbance models improved the effective-
ness of disturbances detection from 78.3% to 80.2%.
Further improvement was achieved by removing the

silence model from between the words at 81.1%,
which is higher score than NM variant at 80.3%. The
penalty system is unsatisfactory: it offers no improve-
ment with introduction of arbitrary model transitions.

In order to verify whether the best achieved out-
come (i. e. recognition rate of 81.1%) is a signifi-
cant improvement compared to what we already had
without including disturbances models (i. e. recogni-
tion rate of 80.3%), we took the 1774 recognition re-
sults from both bare system and enhanced system and
performed bootstrapping on them (Bisani and Ney,
2004), which resulted in 1000 bootstrap populations
of recognition results for both system variants. Be-
cause both variants of the system were tested on the
same data, we made sure that the bootstrap popula-
tions were also the same, allowing us to directly com-
pare recognition rate of each system variant in every
population. We then calculated the mean recognition
rate, its standard deviation and confidence intervals
for both systems (tab. 4). Histograms of this data are
presented on figure 4.

As the last step, we calculated theprobability of
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Table 4: Mean, standard deviation and 90% confidence in-
tervals of recognition rate for two system variants - system
with no modifications and system with disturbance mod-
els, arbitrary transition directions, no penalties and no si-
lence models. We also present statistics for differences be-
tween recognition rate in each bootstrap sample in theIm-
prov. row.

Rec. rate Mean St. dev. Conf. interv.
Unmod. sys. 80.3% 0.92% (78.7 - 81.8)%

Enh. sys. 81.1% 0.92% (79.5 - 82.6)%
Improv. 0.8% 0.52% (-0.1 - 1.7)%

improvement(poi) measure, defined by

poi=
1
B

B

∑
b=1

Θ(∆RRb) , (1)

where B is the number of bootstrap samples,Θ() is
the Heaviside function and∆RRb is the recognition
rate difference between enhanced system and unmod-
ified system forb’th bootstrap sample. This measure
shows the percentage of bootstrap samples in which
recognition rate has been improved in the enhanced
system. In our case,poi amounted to 93.95%, leading
to conclusion that system is improved by introduction
of disturbance models. More details on this measure
may be found in (Bisani and Ney, 2004).

4 CONCLUSIONS

Our approach of handling acoustic disturbances, such
as breaths or filled pauses, improves the resuts of
spontaneous telephonic speech recognition. In or-
der to achieve the improvement, arbitrary transitions
between disturbance models are preferred and inser-
tion of silence models inside a phrase is discour-
aged. The method is useful in ASR systems, which
incorporate Hidden Markov Models in the recogni-
tion task, serving as an extension to the existing sys-
tem. Application of the method can be found in any
scenario, where ASR system has to deal with spon-
taneous speech, an example of such scenario being
recognition of user commands in IVR system menu.
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