investigation of how these results could be applied
in a real setting. Finally, future research could focus
on developing a training algorithm that takes into
account neural diversity.
REFERENCES
Achard, P. & Schutter, E. D., 2006. Complex parameter
landscape for a complex neuron model. PLoS
Computational Biology, 2(7).
Bohte, S., Kok, J. & Poutre, H. L., 2002. Error
backpropagationin temporally encoded networks
ofspiking neurons.. Neurocomputing, Volume 48, pp.
17-37.
Bohte, S. M., Poutre, H. L. & Kok, J. N., 2001.
Unsupervised clustering with spiking neurons by
sparse temporal coding and multi-layer RBF networks.
IEEE Transactions on Neural Networks, Volume XX.
Buzsaki, G., Geisler, C., Henze, D. A. & Wang, X. J.,
2004. Interneuron diversity series: circuit complexity
and axon wiring economy of cortical interneurons.
Trends in Neurosciences, 27(4), p. 186–193.
Cohen, S. & Intrator, N., 2002. A hybrid projection-based
and radial basis function architecture: initial values
and global optimisation. Pattern Analysis and
Applications, 5(2), pp. 113-120.
Fisher, R. A., 1936. The use of multiple measurements in
taxonomic problems. Annals of Eugenics, pp. 179-188.
Ghosh-Dastidar, S. & Adeli, H., 2009. A new supervised
learning algorithm for multiple spiking neural
networks with application in epilepsy and seizure
detection. Neural Networks, Volume 22.
Ianella, N. & Back, A. D., 2001. A spiking neural network
architecture for nonlinear function approximation.
Neural Networks, 14(2001), pp. 933-939.
Izhikevich, E., 2003. Simple model of spiking neurons.
IEEE Transactions on Neural Networks, 14(6).
Izhikevich, E. M., 2004. Which model to use for cortical
spiking neurons?. IEEE Transactions on Neural
Networks, 15(5), pp. 1063-1070.
Izhikevich, E. M., 2006. Dynamical Systems in
Neuroscience: The Geometry of Excitability and
Bursting. s.l.:MIT Press.
Kampakis, S., 2011. Improved Izhikevich neurons for
spiking neural networks. Journal of Soft Computing.
Kampakis, S., 2013 (under review). ReSpiN: A
Supervised Training Algorithm for Rebound Spiking
Neurons. Journal of Soft Computing.
Kampakis, S., 2013. Investigating the computational
power of spiking neurons with non-standard
behaviors. Neural Networks, Volume 43, pp. 41-54.
Keren, N., Peled, N. & Korngreen A., 2006. Constraining
compartmental models using multiple voltage
recordings and genetic algorithms. Journal of
Neurophysiology, pp. 3730-3742.
Klausberger, T. & Somogyi, P., 2008. Neuronal diversity
and temporal dynamics: the unity of hippocampal
circuit operations. Science, 321(5885), pp. 53-57.
Maass, W., 1997. Networks of spiking neurons: the third
generation of spiking neural networks. Neural
Networks, 10(9), pp. 1659-1671.
Maul, T., 2013 (in press, accepted manuscript). Early
experiments with neural diversity machines.
Meftah, B., Lezoray, O. & Benyettou, A., 2010.
Segmentation and edge detection based on spiking
neural network model. Neural Processing Letters,
32(2), pp. 131-146.
Moore, C. I., Carlen, M., Knoblich, U. & Cardin, J. A.,
2010. Neocortical interneurons: from diversity,
strength. Cell, 142(2), pp. 189-193.
Potjans, W., Morrison, A. & Diesmann, M., 2009. A
spiking neural network model of an actor-critic
learning agent. Neural Computation, 21(2), pp. 301-
339.
Rawlins, G. J. E. ed., 1991. Foundations of Genetic
Algorithms (FOGA 1). s.l.:Morgan Kaufmann.
Taylor, A. M. & Enoka, R. M., 2004. Optimization of
input patterns and neuronal properties to evoke motor
neuron synchronization. Journal of Computational
Neuroscience, 16(2), pp. 139-157.
Tutkun, N., 2009. Parameter estimation in mathematical
models using the real coded genetic algorithms. Expert
Systems with Applications, 36(2), pp. 3342-3345.
Valko, M., Marques, N. C. & Castellani, M., 2005.
Evolutionary feature selection for spiking neural
network pattern classifiers. Covilha, IEEE, pp. 181 -
187.
Van Geit, W., De Schutter, E. & Achard, P., 2008.
Automated neuron model optimization techniques: a
review. Biological Cybernetics, Volume 99, pp. 241-
251.
Wade, J. J., McDaid, L. J., Santos, J. A. & Sayers, H. M.,
2008. SWAT: An unsupervised SNN training algorithm
for classification problems. Hong Kong, IEEE, pp.
2648 - 2655.
Wang, H., 2009. Improvement of Izhikevich’s neuronal
and neural network model. Wuhan, China, IEEE.
Wu, C.-H., Tzeng, G.-H. & Lin, R.-H., 2009. A novel
hybrid genetic algorithm for kernel function and
parameter optimization in support vector regression.
Expert Systems with Applications, 36(3), pp. 4725-
4735.
AreNon-StandardNeuralBehaviorsComputationallyRelevant?
37