Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface
Francesco Cavrini, Lucia Rita Quitadamo, Luigi Bianchi, Giovanni Saggio
2014
Abstract
In this paper we propose a framework for combination of classifiers using fuzzy measures and integrals that aims at providing researchers and practitioners with a simple and structured approach to deal with two issues that often arise in many pattern recognition applications: (i) the need for an automatic and user-specific selection of the best performing classifier or, better, ensemble of classifiers, out of the available ones; (ii) the need for uncertainty identification which should result in an abstention rather than an unreliable decision. We evaluate the framework within the context of Brain-Computer Interface, a field in which abstention and intersubject variability have a remarkable impact. Analysis of experimental data relative to five subjects shows that the proposed system is able to answer such needs.
References
- Aloise, F., Aricò, P., Schettini, F., Salinari, S., Mattia, D., and Cincotti, F. (2013). Asynchronous gaze-independent event-related potential-based braincomputer interface. Artificial intelligence in medicine, 59(2):61-69.
- Alpaydin, E. (2009). Introduction to Machine Learning. The MIT Press, 2nd edition.
- Bianchi, L., Quitadamo, L. R., Abbafati, M., Marciani, M. G., and Saggio, G. (2009). Introducing NPXLab 2010: a tool for the analysis and optimization of P300 based brain-computer interfaces. In 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, pages 1-4. IEEE.
- Bianchi, L., Sami, S., Hillebrand, A., Fawcett, I. P., Quitadamo, L. R., and Seri, S. (2010). Which physiological components are more suitable for visual ERP based brain-computer interface? a preliminary MEG/EEG study. Brain topography, 23(2):180-185.
- Choquet, G. (1953). Theory of capacities. Annales de l'Institute Fourier, 5:131-295.
- De Campos, L. M. and Jorge, M. (1992). Characterization and comparison of Sugeno and Choquet integrals. Fuzzy Sets and Systems, 52(1):61-67.
- Faradji, F., Ward, R. K., and Birch, G. E. (2008). Self-paced BCI using multiple SWT-based classifiers. In 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2095- 2098. IEEE.
- Farwell, L. A. and Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6):510-523.
- Grabisch, M. (1996). The application of fuzzy integrals in multicriteria decision making. European journal of operational research, 89(3):445-456.
- Grabisch, M. (1997). k-order additive discrete fuzzy measures and their representation. Fuzzy sets and systems, 92(2):167-189.
- Grabisch, M., Nguyen, H. T., and Walker, E. A. (1995). Fundamentals of uncertainty calculi with applications to fuzzy inference. Kluwer Academic Publishers.
- Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J., Cash, S. S., van der Smagt, P., and Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398):372-375.
- Johnson, G. D. and Krusienski, D. J. (2009). Ensemble SWLDA classifiers for the P300 speller. In Jacko, J. A., editor, Human-Computer Interaction. Novel Interaction Methods and Techniques, pages 551-557. Springer.
- Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., and Wolpaw, J. (2008). Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 167(1):15-21.
- Kuncheva, L. (2001). Combining classifiers: Soft computing solutions”. In Pal, S. and Pal, A., editors, Pattern recognition: From classical to modern approaches, pages 427-451. World Scientific.
- Miranda, P. and Grabisch, M. (1999). Optimization issues for fuzzy measures. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7(6):545-560.
- Muller-Putz, G. R. and Pfurtscheller, G. (2008). Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Transactions on Biomedical Engineering, 55(1):361-364.
- Murofushi, T. and Soneda, S. (1993). Techniques for reading fuzzy measures (iii): Interaction index. In 9th Fuzzy Systems Symposium, pages 693-696. In Japanese.
- Murofushi, T. and Sugeno, M. (2000). Fuzzy measures and fuzzy integrals. In Grabisch, M., Murofushi, T., Sugeno, M., and Kacprzyk, J., editors, Fuzzy Measures and Integrals - Theory and Applications, pages 3-41. Physica Verlag.
- Rakotomamonjy, A. and Guigue, V. (2008). BCI competition III: Dataset II - ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical Engineering, 55(3):1147-1154.
- Ranawana, R. and Palade, V. (2006). Multi-classifier systems: Review and a roadmap for developers. International Journal of Hybrid Intelligent Systems, 3(1):35- 61.
- Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, V., and Burdet, E. (2010). A brain controlled wheelchair to navigate in familiar environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6):590-598.
- Schettini, F., Aloise, F., Aric, P., Salinari, S., Mattia, D., and Cincotti, F. (2014). Self-calibration algorithm in an asynchronous P300-based brain-computer interface. Journal of Neural Engineering, 11(3):035004.
- Sellers, E. W., Vaughan, T. M., and Wolpaw, J. R. (2010). A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis, 11(5):449- 455.
- Shapley, L. (1953). A value for n-person games. In Kuhn, H. and Tucker, A., editors, Contributions to the theory of games, volume II, pages 307-317. Princeton University Press.
- Sugeno, M. (1974). Theory of fuzzy integrals and its applications. PhD thesis, Tokyo, Japan.
- Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M. (2002). Braincomputer interfaces for communication and control. Clinical Neurophysiology, 113(6):767-791.
Paper Citation
in Harvard Style
Cavrini F., Quitadamo L., Bianchi L. and Saggio G. (2014). Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface . In Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014) ISBN 978-989-758-053-6, pages 14-24. DOI: 10.5220/0005035900140024
in Bibtex Style
@conference{fcta14,
author={Francesco Cavrini and Lucia Rita Quitadamo and Luigi Bianchi and Giovanni Saggio},
title={Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface},
booktitle={Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)},
year={2014},
pages={14-24},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005035900140024},
isbn={978-989-758-053-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)
TI - Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface
SN - 978-989-758-053-6
AU - Cavrini F.
AU - Quitadamo L.
AU - Bianchi L.
AU - Saggio G.
PY - 2014
SP - 14
EP - 24
DO - 10.5220/0005035900140024