Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface

Francesco Cavrini, Lucia Rita Quitadamo, Luigi Bianchi, Giovanni Saggio

2014

Abstract

In this paper we propose a framework for combination of classifiers using fuzzy measures and integrals that aims at providing researchers and practitioners with a simple and structured approach to deal with two issues that often arise in many pattern recognition applications: (i) the need for an automatic and user-specific selection of the best performing classifier or, better, ensemble of classifiers, out of the available ones; (ii) the need for uncertainty identification which should result in an abstention rather than an unreliable decision. We evaluate the framework within the context of Brain-Computer Interface, a field in which abstention and intersubject variability have a remarkable impact. Analysis of experimental data relative to five subjects shows that the proposed system is able to answer such needs.

References

  1. Aloise, F., Aricò, P., Schettini, F., Salinari, S., Mattia, D., and Cincotti, F. (2013). Asynchronous gaze-independent event-related potential-based braincomputer interface. Artificial intelligence in medicine, 59(2):61-69.
  2. Alpaydin, E. (2009). Introduction to Machine Learning. The MIT Press, 2nd edition.
  3. Bianchi, L., Quitadamo, L. R., Abbafati, M., Marciani, M. G., and Saggio, G. (2009). Introducing NPXLab 2010: a tool for the analysis and optimization of P300 based brain-computer interfaces. In 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, pages 1-4. IEEE.
  4. Bianchi, L., Sami, S., Hillebrand, A., Fawcett, I. P., Quitadamo, L. R., and Seri, S. (2010). Which physiological components are more suitable for visual ERP based brain-computer interface? a preliminary MEG/EEG study. Brain topography, 23(2):180-185.
  5. Choquet, G. (1953). Theory of capacities. Annales de l'Institute Fourier, 5:131-295.
  6. De Campos, L. M. and Jorge, M. (1992). Characterization and comparison of Sugeno and Choquet integrals. Fuzzy Sets and Systems, 52(1):61-67.
  7. Faradji, F., Ward, R. K., and Birch, G. E. (2008). Self-paced BCI using multiple SWT-based classifiers. In 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2095- 2098. IEEE.
  8. Farwell, L. A. and Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6):510-523.
  9. Grabisch, M. (1996). The application of fuzzy integrals in multicriteria decision making. European journal of operational research, 89(3):445-456.
  10. Grabisch, M. (1997). k-order additive discrete fuzzy measures and their representation. Fuzzy sets and systems, 92(2):167-189.
  11. Grabisch, M., Nguyen, H. T., and Walker, E. A. (1995). Fundamentals of uncertainty calculi with applications to fuzzy inference. Kluwer Academic Publishers.
  12. Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J., Cash, S. S., van der Smagt, P., and Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398):372-375.
  13. Johnson, G. D. and Krusienski, D. J. (2009). Ensemble SWLDA classifiers for the P300 speller. In Jacko, J. A., editor, Human-Computer Interaction. Novel Interaction Methods and Techniques, pages 551-557. Springer.
  14. Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., and Wolpaw, J. (2008). Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 167(1):15-21.
  15. Kuncheva, L. (2001). Combining classifiers: Soft computing solutions”. In Pal, S. and Pal, A., editors, Pattern recognition: From classical to modern approaches, pages 427-451. World Scientific.
  16. Miranda, P. and Grabisch, M. (1999). Optimization issues for fuzzy measures. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7(6):545-560.
  17. Muller-Putz, G. R. and Pfurtscheller, G. (2008). Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Transactions on Biomedical Engineering, 55(1):361-364.
  18. Murofushi, T. and Soneda, S. (1993). Techniques for reading fuzzy measures (iii): Interaction index. In 9th Fuzzy Systems Symposium, pages 693-696. In Japanese.
  19. Murofushi, T. and Sugeno, M. (2000). Fuzzy measures and fuzzy integrals. In Grabisch, M., Murofushi, T., Sugeno, M., and Kacprzyk, J., editors, Fuzzy Measures and Integrals - Theory and Applications, pages 3-41. Physica Verlag.
  20. Rakotomamonjy, A. and Guigue, V. (2008). BCI competition III: Dataset II - ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical Engineering, 55(3):1147-1154.
  21. Ranawana, R. and Palade, V. (2006). Multi-classifier systems: Review and a roadmap for developers. International Journal of Hybrid Intelligent Systems, 3(1):35- 61.
  22. Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, V., and Burdet, E. (2010). A brain controlled wheelchair to navigate in familiar environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6):590-598.
  23. Schettini, F., Aloise, F., Aric, P., Salinari, S., Mattia, D., and Cincotti, F. (2014). Self-calibration algorithm in an asynchronous P300-based brain-computer interface. Journal of Neural Engineering, 11(3):035004.
  24. Sellers, E. W., Vaughan, T. M., and Wolpaw, J. R. (2010). A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis, 11(5):449- 455.
  25. Shapley, L. (1953). A value for n-person games. In Kuhn, H. and Tucker, A., editors, Contributions to the theory of games, volume II, pages 307-317. Princeton University Press.
  26. Sugeno, M. (1974). Theory of fuzzy integrals and its applications. PhD thesis, Tokyo, Japan.
  27. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M. (2002). Braincomputer interfaces for communication and control. Clinical Neurophysiology, 113(6):767-791.
Download


Paper Citation


in Harvard Style

Cavrini F., Quitadamo L., Bianchi L. and Saggio G. (2014). Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface . In Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014) ISBN 978-989-758-053-6, pages 14-24. DOI: 10.5220/0005035900140024


in Bibtex Style

@conference{fcta14,
author={Francesco Cavrini and Lucia Rita Quitadamo and Luigi Bianchi and Giovanni Saggio},
title={Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface},
booktitle={Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)},
year={2014},
pages={14-24},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005035900140024},
isbn={978-989-758-053-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)
TI - Combination of Classifiers using the Fuzzy Integral for Uncertainty Identification and Subject Specific Optimization - Application to Brain-Computer Interface
SN - 978-989-758-053-6
AU - Cavrini F.
AU - Quitadamo L.
AU - Bianchi L.
AU - Saggio G.
PY - 2014
SP - 14
EP - 24
DO - 10.5220/0005035900140024