REFERENCES
Bartlett, P. L. (1998). The sample complexity of pattern
classification with neural networks: the size of the
weights is more important than the size of the net-
work. IEEE Transactions on Information Theory,
44(2):525–536.
Belkin, M., Niyogi, P., and Sindhwani, V. (2007). Manifold
regularization: A geometric framework for learning
from labeled and unlabeled examples. Journal of Ma-
chine Learning Research, 7:2399–2434.
Devijver, P. and Kittler, J. (1982). Pattern Recognition: A
Statistical Approach. Prentice-Hall.
Duda, R., Hart, P., and Stork, D. (2000). Pattern Classifica-
tion, 2nd ed. Wiley-Interscience.
Helmy, T. and Rasheed, Z. (2009). Multi-category bioin-
formatics dataset classification using extreme learning
machine. IEEE Evolutionary Computation.
Huang, G. B., Chen, L., and Siew, C. K. (2006). Universal
approximation using incremental constructive feed-
forward networks with random hidden nodes. IEEE
Transactions on Neural Networks, 17(4):879–892.
Huang, G. B., Zhou, H., Ding, X., and Zhang, R. (2012).
Extreme learning machine for regression and mul-
ticlass classification. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics,
42(2):513–529.
Huang, G. B., Zhu, Q. Y., and Siew, C. K. (2004). Extreme
learning machine: a new learning scheme of feedfor-
ward neural networks. IEEE International Joint Con-
ference on Neural Networks.
Iosifidis, A., Tefas, A., and Pitas, I. (2013a). Active classi-
fication for human action recognition. IEEE Interna-
tional Conference on Image Processing.
Iosifidis, A., Tefas, A., and Pitas, I. (2013b). Dynamic ac-
tion recognition based on dynemes and extreme learn-
ing machine. Pattern Recognition Letters, 34:1890–
1898.
Iosifidis, A., Tefas, A., and Pitas, I. (2013c). Minimum class
variance extreme learning machine for human action
recognition. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 23(11):1968–1979.
Iosifidis, A., Tefas, A., and Pitas, I. (2013d). Person iden-
tification from actions based on artificial neural net-
works. IEEE Symposium Series on Computational In-
telligence.
Iosifidis, A., Tefas, A., and Pitas, I. (2014a). Human action
recognition based on bag of features and multi-view
neural networks. IEEE International Conference on
Image Processing.
Iosifidis, A., Tefas, A., and Pitas, I. (2014b). Minimum
variance extreme learning machine for human ac-
tion recognition. IEEE International Conference on
Acoustics, Speech and Signal Processing.
Iosifidis, A., Tefas, A., and Pitas, I. (2014c). Semi-
supervised classification of human actions based on
neural networks. IEEE International Conference on
Pattern Recognition.
Kanade, T., Tian, Y., and Cohn, J. (2000). Comprehensive
database for facial expression analysis. IEEE Inter-
national Conference on Automatic Face and Gesture
Recognition.
Kondor, R. and Lafferty, J. (2002). Diffusion kernels on
graphs and other discrete input spaces. International
Conference on Machine Learning.
Lan, Y., Soh, Y. C., and Huang, G. B. (2008). Extreme
learning machine based bacterial protein subcellular
localization prediction. IEEE International Joint Con-
ference on Neural Networks.
Lee, K. C., Ho, J., and Kriegman, D. (2005). Acquiriing
linear subspaces for face recognition under varialbe
lighting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(5):684–698.
Lyons, M., Akamatsu, S., Kamachi, M., and Gyoba,
J. (1998). Coding facial expressions with gabor
wavelets. IEEE International Conference on Auto-
matic Face and Gesture Recognition.
Martinez, A. and Kak, A. Pca versus lda. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
23(2):228–233.
Rong, H. J., Huang, G. B., and Ong, Y. S. (2008). Ex-
treme learning machine for multi-categories classifi-
cation applications. IEEE International Joint Confer-
ence on Neural Networks.
Samaria, F. and Harter, A. (1994). Parameterisation of a
stochastic model for human face identification. IEEE
Workshop on Applications of Computer Vision.
Sugiyama, M. (2007). Dimensionality reduction of multi-
modal labeled data by local fisher discriminant analy-
sis. Journal of Machine Learning Research, 8:1027–
1061.
Wang, Y., Cao, F., and Yuan, Y. (2011). A study on effec-
tiveness of extreme learning machine. Neurocomput-
ing, 74(16):2483–2490.
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., and Lin,
S. (2007). Graph embedding and extensions: A gen-
eral framework for dimensionality reduction. IEEE
Transactions on on Pattern Analysis ans Machine In-
telligence, 29(1):40–50.
Yin, L., Wei, X., Sun, Y., Wang, J., and Rosato, M. (2006).
A 3d facial expression database for facial behavior re-
search. IEEE International Conference on Automatic
Face and Gesture Recognition.
Zong, W. and Huang, G. B. (2011). Face recognition
based on extreme learning machine. Neurocomputing,
74(16):2541–2551.
ExploitingLocalClassInformationinExtremeLearningMachine
55