is asymptotically stable, one basically has to test ei-
ther theorem 2 or theorem 4 or theorem 5. Theorem 2
allows us to decide it by making the computations di-
rectly on the entries of the matrices, whereas the oth-
ers require the application of the canonical transfor-
mation of the matrices. The striking point of the use
of canonical transformation is that it yield some infor-
mation on the eigenvalues of the matrices, which pro-
vides deeper insights into the relationships between
the matrix structure and asymptotic stability.
REFERENCES
Ansell, H. G. (1964). On certain two variable generaliza-
tions of circuit theory, with applications to networks
of transmission lines and lumped reactances. In IRE
Trans. on Circuit Theory, volume CT, pages 214–223.
Attasi, S. (1973). Systemes lineaires homogenes a deux
indices. In Rapport Laboria, number 31.
Bose, N. K. (1982). Applied multdimensional systems the-
ory. England: Van Nostradand Reinhold Co.
Cheng, S. S. (2003). Partial difference equations. London:
Taylor & Francis.
Du, C. and Xie, L. (2002). H-infinity control and filtering of
two-dimensional systems. Berlin, Germany: Springer
Verlag.
Elaydi, S. (2005). An introduction to difference equations.
USA: Springer Science.
Gantmatcher, F. R. (1959). The Theory of matrices. New
York, USA: Chelsea.
Izuta, G. (2007a). 2-d discrete linear control systems with
multiple delays in the inputs and outputs on the ba-
sis of observer controllers. WSEAS trans. systems,
16(1):9–17.
Izuta, G. (2007b). Stability and disturbance attenuation of
2-d discrete delayed systems via memory state feed-
back controller. Int. J. Gen. Systems, 36(3):263–280.
Izuta, G. (2007c). Stability of a class of 2-d output feed-
back control system. In Proc. IEEE SMC’07, Mon-
treal, Canada. CDROM format.
Izuta, G. (2010a). Stability analysis of 2-d discrete systems
on the basis of lagrange solutions and doubly similar-
ity transformed systems. In Proc. 35th annual conf.
IEEE IES, Porto, Portugal. CDROM format.
Izuta, G. (2010b). Stability analysis of 2-d linear discrete
feedback control systems with state delays on the basis
of Lagrange solutions, pages 311–329. Sciyo.
Jerri, A. J. (1996). Linear difference equations with discrete
transform methods. Netherlands: Kluwer Acad. Pub.
Juri, E. I. (1978). Stability of multidimensional scalar and
matrix polynomials. In Proc. IEEE, number 66, pages
1018–1047.
Kasami, H. O. . T. (1960). Positive real functions of several
variables and their applications to variable network.
In IRE Trans. on Circuit Theory, volume CT, pages
251–260.
Leondes, C., editor (1995). Multidimensional Systems: Sig-
nal Processing and Modeling Techniques Advances in
Theory and Applications. Academic Press.
Lim, J. S. (1990). Two-dimensional linear signal and image
processing. New Jersey, USA: Prentice Hall.
Marchesini, E. F. . G. (1978). Doubly indexed dynamical
systems: State space models and structural properties.
In Math. Syst. Th., number 12, pages 59–72.
Matsuo, T. and Hasegawa, Y. (2003). Discrete-Time Dy-
namical Systems, two-Dimensional Linear Systems.
Springer-Verlag, Lecture Notes in Control and Infor-
mation Sciences.
Roesser, D. D. G. . R. P. (1972). Multidimensional linear
iterative circuits - general properties. In IEEE Trans.
Comp., volume C, pages 1067–1073.
Roesser, D. P. (1975). A discrete state-space model for im-
age processing. In IEEE Trans. Automat. Contr., vol-
ume AC, pages 1–10.
Rosenthal, J. and Gilliam, D. S. (2003). Mathematical Sys-
tems Theory in Biology, Communications, Computa-
tion and Finance Advances in Theory and Applica-
tions. Springer.
Russell, J. and Cohn, R. (2013). Multidimensional Systems.
Book on Demand Ltd.
Suda, S. K. . N. (1978). Matrix theory for control systems
(in Japanese). Japan: Sice.
Tzafestas, S. G. (1986). Multidimensional systems - Tech-
niques and Applications. New York: Marcel Dekker.
W. S. Lu, A. A. (1992). Two-Dimensional Digital Filters.
New York:Marcel Dekker.
Wall, F. T. (1987). Discrete wave mechanics: Multidimen-
sional systems. In Proc. Natl. Acad. Sci. USA, vol-
ume 84, pages 3091–3094.
Wood, K. G. . J. D. (2004). Multidimensional Signals, Cir-
cuits and Systems. CRC Press.
Zerz, E. (2000). Topics in Multidimensional Linear Systems
Theory. Springer.
ICINCO2014-11thInternationalConferenceonInformaticsinControl,AutomationandRobotics
670