homogeneously.
Furthermore, the presented algorithm does not
consider the demanded QCIs and throughputs of dif-
ferent users. Real user data is needed to verify
whether there are clusters of users who need a high
throughput (e.g. privileged users) and clusters of users
who do not need a high throughput. In combination
with handover parameters, the scheduling algorithm,
MIMO transmission techniques and other parameters,
the optimisation might be even more successful.
REFERENCES
3GPP (2007). LTE Physical Layer Framework for Perfor-
mance Verification. Tech. rep., 3rd Generation Part-
nership Proj.
3GPP (2012a). Evolved Universal Terrestrial Radio Access
Network; X2 general aspects and principles. Tech.
rep. v. 11.0.0, 3rd Generation Partnership Proj.
3GPP (2012b). Technical Specification Group Radio Ac-
cess Network; Evolved Universal Terrestrial Radio
Access; Radio Frequency system scenarios. Tech. rep.
v. 11.0.0, 3rd Generation Partnership Proj.
Ankerst, M., Breunig, M., Kriegel, H., and Sander, J.
(1999). Optics: Ordering points to identify the clus-
tering structure. In Proc. of SIGM99, pages 49 – 60.
Awada, A., Wegmann, B., Viering, I., and Klein, A. (2011).
Optimizing the Radio Network Parameters of the LTE
System Using Taguchi’s Method. IEEE Trans. on Ve-
hicular Technology, 60(8):3825–3839.
Bratu, V.-I. (2012). Self-optimisation of Antenna Tilt in
Mobile Networks. Master’s thesis, KTH Royal Insti-
tute of Technology.
Claussen, H. (2005). Efficient Modelling of Channel Maps
with Correlated Shadow Fading in Mobile Radio Sys-
tems. In Proc. of 16th Symp. on Personal, Indoor and
Mobile Radio Com., pages 512 – 516.
Dean, T. (2009). Network+ Guide to Networks. Cengage
Course Technology.
Deruyck, M., Joseph, W., Lannoo, B., Colle, D., and
Martens, L. (2013). Designing Energy-Efficient Wire-
less Access Networks: LTE and LTE-Advanced. IEEE
Internet Computing, 17(5):39 – 45.
Du, L., Bigham, J., Cuthbert, L., Parini, C., and Nahi, P.
(2002). Cell size and shape adjustment depending on
call traffic distribution. In Proc. of WCNC’02, vol-
ume 2, pages 886 – 891.
Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996).
A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise. In Proc. of
Int. Conf. on Knowledge Discovery and Data Mining,
pages 226 – 231.
Fehske, A., Klessig, H., Voigt, J., and Fettweis, G. (2013).
Concurrent Load-aware Adjustment of User Associa-
tion and Antenna Tilts in Self-organising Radio Net-
works. IEEE Trans. on Vehicular Technology, 1:99 ff.
Fowlker, E. and Mallows, C. (1983). A Method for Compar-
ing Two Hierarchical Clusterings. J. of the Amercian
Statistical Association, 78(383):553 – 569.
Ghosh, A., Zhang, J., Andrews, J., and Muhamed, R.
(2010). Fundamentals of LTE. Prentice Hall.
Hill, J. (1976). Gain of directional antennas. Technical
report, Watkins-Johnson Co.
Holma, H. and Toskala, A. (2012). LTE Advanced: 3GPP
Solution for IMT-Advanced. Wiley and Sons.
Ikuno, J. C., Wrulich, M., and Rupp, M. (2010). Sys-
tem Level Simulation of LTE Networks. In Proc. of
VTC’10, pages 1 – 5.
Iwamura, M., Umesh, A., and Hapsari, W. A. (2009). Fur-
ther Enhancements of LTE – LTE Release 9. NTT Do-
como Tech. J., 12(1):45 – 53.
Josang, A. and Ismail, R. (2002). The Beta Reputation Sys-
tem. In Proc. of Bled Electronic Commerce Conf.,
pages 41 – 55.
Kim, H., de Veciana, G., Yang, X., and Venkatachalam,
M. (2012). Distributed Alpha-optimal User Associ-
ation and Cell Load Balancing in Wireless Networks.
IEEE/ACM Trans. on Networks, 20(1):177–190.
Kirkpatrick, S., Jr., D. G., and Vecchi, M. P. (1983).
Optimization by Simmulated Annealing. Science,
220(4598):671 – 680.
M¨uller-Schloer, C. (2004). Organic Computing: On the
Feasibility of Controlled Emergence. In Proc. of
CODES and ISSS’04, pages 2–5.
Niu, Z., Wu, Y., Gong, J., and Yang, Z. (2010). Cell zoom-
ing for cost-efficient green cellular networks. IEEE
Com. Mag., 48(11):74–79.
Nokia Siemens Networks Corporation (2012). Active an-
tenna systems: A step-change in base station site per-
formance. Technical report.
Razavi, R. (2012). Self-optimisation of antenna beam tilting
in lte networks. In Proc. of VTC’12, pages 1–5.
Razavi, R., Klein, S., and Claussen, H. (2010). Self-
optimisation of Capacity and Coverage in LTE Using
a Fuzzy Reinforcement Learning Approach. In Proc.
of IEEE PIMRC’10, pages 1865 – 1870.
Temesvary, A. (2009). Self-Configuration of Antenna Tilt
and Power for Plug and Play Deployed Cellular Net-
works. In Proc. of Wireless Communications and Net-
working Conf., pages 1–6.
Tomforde, S., Cakar, E., and H¨ahner, J. (2009). Dynamic
Control of Network Protocols - A new vision for fu-
ture self-organised networks. In Proc. of ICINCO’09,
pages 285 – 290.
Tomforde, S. and H¨ahner, J. (2011). Biologically Inspired
Networking and Sensing: Algorithms and Architec-
tures, chapter Organic Network Control – Turning
standard protocols into evolving systems, pages 11 –
35. IGI Publishers.
Wang, J. (2007). Performance Analysis and Measurement
of CDMA2000 System in Metropolitan Taipei. PhD
thesis, Nat. Taiwan Univ. of Science and Tech.
Weng, W., Yang, F., and Elsherbeni, A. (2007). Linear An-
tenna Array Synthesis Using Taguchi’s Method: A
Novel Optimization Technique in Electromagnetics.
Trans. on Antennas and Propagation, 55:723 – 730.
Willkomm, D., Machiraju, S., Bolot, J., and Wolisz, A.
(2009). Primary User Behavior in Cellular Net-
works and Implications for Dynamic Spectrum Ac-
cess. IEEE Com. Mag., 47(3):88 – 95.
Load-awareReconfigurationofLTE-Antennas-DynamicCell-phoneNetworkAdaptationUsingOrganicNetworkControl
243