Research Program of Chinese Academy of Sciences
(No.XDA06010701), and the Foundation of Institute
of Information Engineering for Cryptography.
REFERENCES
Backes, M., Pfitzmann, B., Scedrov, A. (2008). Key-
dependent message security under active attacks -
BRSIM/UC-soundness of dolev-yao-style encryption
with key cycles. Journal of Computer Security. Vol.
16(5), pp. 497-530.
Barak, B., Haitner, I., Hofheinz, D., Ishai, Y. (2010).
Bounded key-dependent message security. In EURO-
CRYPT’10. LNCS, vol. 6110, pp. 423-444. Springer,
Heidelberg.
Black, J., Rogaway, P., Shrimpton, T. (2002). Encryption-
scheme security in the presence of key-dependent
messages. In SAC’02. LNCS, vol. 2595, pp. 62-75.
Springer, Heidelberg.
Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.
(2008). Circular-secure encryption from decision
Diffie-Hellman. In CRYPTO’08. LNCS, vol. 5157, pp.
108-125. Springer, Heidelberg.
Brakerski, Z., Goldwasser, S., Kalai, Y.T. (2011). Black-
box circular-secure encryption beyond affine func-
tions. In TCC’11. LNCS, vol. 6597, pp. 201-218.
Springer, Heidelberg.
Camenisch, J., Chandran, N., Shoup, V. (2009). A public
key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext at-
tacks. In EUROCRYPT’09. LNCS, vol. 5479, pp. 351-
368. Springer, Heidelberg.
Camenisch, J., Lysyanskaya, A. (2001). An efficient sys-
tem for non-transferable anonymous credentials with
optional anonymity revocation. In EUROCRYPT’01.
LNCS, vol. 2045, pp. 93-118. Springer, Heidelberg.
Cash, D., Green, M. and Hohenberger, S. (2012). New
definitions and separations for circular security. In
PKC’12. LNCS, vol. 7293, pp. 540-557. Springer,
Heidelberg.
Cramer, R., Shoup, V. (2002). Universal hash proofs and
a paradigm for adaptive chosen ciphertext secure
public-key encryption. In EUROCRYPT’02. LNCS,
vol. 2332, pp. 45-64. Springer, Heidelberg.
Galindo, D., Herranz, J., Villar, J. (2012). Identity-based en-
cryption with master keydependent message security
and leakage-resilience. In ESORICS’12. LNCS, vol.
7459, pp. 627-642. Springer, Heidelberg.
Goldwasser, S., Micali, S. (1984). Probabilistic encryption.
J. Comput. Syst. Science. Vol. 28(2), pp. 270-299.
Hofheinz, D. (2013). Circular chosen-ciphertext secu-
rity with compact ciphertexts. In EUROCRYPT’13.
LNCS, vol. 7881, pp. 520-536. Springer, Heidelberg.
Naor, M., Yung, M. (1990). Public-key cryptosystems
provably secure against chosen ciphertext attacks. In
STOC’90. pp. 427-437. ACM.
Qin, B., Liu, S., Huang, Z. (2013). Key-dependent message
chosen-ciphertext security of the Cramer-Shoup cryp-
tosystem. In ACISP’13. LNCS, vol. 7959, pp. 136-
151. Springer, Heidelberg.
Rackoff, C., Simon, D. (1992). Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext
attack. In CRYPTO’91. LNCS, vol. 576, pp. 433-444.
Springer, Heidelberg.
Roman, R., Alcaraz Tello, C., Lopez, J., Sklavos, N. (2011).
Key management systems for sensor networks in the
context of the Internet of things. Computers & Elec-
trical Engineering. Vol. 37(2), pp. 147-159.
APPENDIX (QLH-Ensemble)
Let q be a prime number and X be a subset of Z
q
.
Then the QLH-function ensemble is a family of func-
tions F
q,n
:= { f : X
n
→ Z
N
} and each function f ∈
F
q,n
is defined as
f (x
1
,··· ,x
n
) =
∑
t
α
t
∏
i6= j,i, j∈[n]
(x
i
− x
j
)
a
i, j,t
mod q,
where α
t
∈ Z
q
and a
i, j,t
∈ N.
Specific to the tailored CS-scheme, we can repre-
sent functions from the QLH-ensemble as
f (sk
1
,··· ,sk
n
)
=
∑
t
1
,t
2
,t
3
α
t
1
,t
2
,t
3
∏
i> j,i, j∈[n],s
1
,s
2
,s
3
∈{1,2}
[(x
i,s
1
− x
j,s
1
)
b
i, j,t
1
· (y
i,s
1
− y
j,s
1
)
b
i, j,t
2
· (z
i,s
1
− z
j,s
1
)
b
i, j,t
3
] (mod q),
where sk
i
= (x
i1
,x
i2
,y
i1
,y
i2
,z
i1
,z
i2
) is the secret key
for the ith user, α
t
1
,t
2
,t
3
∈ Z
q
, b
i, j,t
1
,b
i, j,t
2
and b
i, j,t
3
∈
N.
SECRYPT2014-InternationalConferenceonSecurityandCryptography
306